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ABSTRACT

 Mast cells (MCs) are well known for their implications in allergic reactions. They 

are also known to have multiple functions in the innate and adaptive immune system. Their 

activation plays an essential role in many aspects of physiological and pathological 

conditions. Allergies are considered chronic conditions that affect more than 60 million 

people in the U.S. These diseases are driven by the activation of MCs in response to IgE-

mediated antigen, rendering these cells as targets for the management of allergies and 

asthma. Therefore, this research considers the understanding of their activation and the 

regulation of their response to be an important step for the management of allergies. 

Previous studies have shown the role of adenosine in the modulation of the activation of 

mast cells through its interaction with its receptors in allergic asthma. In this study, we 

investigated the role of the adenosine receptors, and particularly the A2A subtype, on the 

regulation of allergic mediators from human skin mast cells. We demonstrated that A2A 

signals inhibit FcɛRI–induced proinflammatory cytokines via cAMP mechanism. 

However, the A2A receptor has no effects on FcɛRI-induced degranulation or PGD2 

production. We also showed that FcɛRI signaling plays a significant role in the modulation 

of the expression and the function of adenosine receptors on mast cells. We found that sub-

threshold stimulation of FcɛRI led to up-regulation of the A2A, and to down-regulation of 

the A3 receptors at the mRNA and protein levels. Additionally, we observed that up-

regulation of the A2A receptors by sub-threshold of FcɛRI led to be more pronounced 

inhibition of TNF by adenosine, which shifts mast cells into anti-inflammatory phenotype.  
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Next, we explored the role of miR-155 in MCs function. MiRNAs have been 

reported to regulate different genes involved in MCs activation, and miRNAs impact the 

function of MCs in various allergic reactions. 

 Research indicates miR-155 plays a key regulatory role in the pathogenesis of 

allergy. In this project, miR-155 expression was induced following IgE-receptor 

crosslinking on human skin mast cells as well as mast cells derived from bone mouse bone 

marrow (BMMCs). MiR-155 had no effect on IgE-dependent degranulation or leukotriene 

C4 secretion. Accordingly, arachidonate 5-lipoxygenase (ALOX5) expression was similar 

in WT and miR-155 KO BMMCs. 

 In contrast, FcɛRI-induced COX-2 expression was significantly diminished in the 

absence of miR-155, suggesting that miR-155 plays a critical role in prostaglandin D2 

biosynthesis. In addition, FcɛRI-induced TNF, IL-6, and IL-13 was significantly 

diminished in miR-155 KO BMMCs compared to WT. Interestingly, the amount of these 

cytokines from miR-155 KO BMMCs increased compared to WT following LPS 

treatment. The phosphorylation of AKT was significantly decreased in miR-155 KO 

compared with WT following FcɛRI crosslinking, whereas p38, and p42/p44 

phosphorylation were the same in both types of mast cells. Collectively, these data 

demonstrate that miR-155 has both a positive and a negative regulatory action on the mast 

cell mediator release.  

Recently, many studies have revealed that the natural polyphenol Resveratrol 

exhibits different biological and pharmacological properties, including anti- allergic effect. 

In the current study, experiments were designed to study the role of miRNAs in 
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Resveratrol-mediated inhibition COX-2 expression in the activated mast cells. We showed 

that Resveratrol inhibited FcɛRI-induced COX-2 production in WT BMMCs and failed to 

inhibit COX-2 expression in miR-155 KO BMMCs. MiRNA array analysis and Ingenuity 

Pathway Analysis (IPA) revealed an altered miRNAs profile following Resveratrol 

treatment. One of the miRNAs that was significantly downregulated after Resveratrol 

treatment was miR-155. We then validated the miRNA array and IPA analysis by qRT-

PCR. According to our results, there was a positive correlation between miR-155 and 

COX-2 expression in activated SMCs, in which both were downregulated after RSV 

treatment. However, the ATF3 expression was increased, which suggests that miR-155 

could be the target of COX-2 expression. Collectively, Resveratrol inhibits FcɛRI-induced 

COX-2 expression through inhibition miR-155 in mast cells. Therefore targeting miR-155- 

mediated inhibition of COX-2 by Resveratrol may serve as a new approach for the 

treatment of the allergic condition.
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CHAPTER 1

INTRODUCTION 

1.1 General Biology of Mast Cells 

Mast cells (MCs) are highly granulated immune cells of hematopoietic lineage that 

are found in all mammalian species1,2. Mature mast cells are characterized by three main 

features: (1) expression of FcεRI, the high affinity receptor for Immunoglobulin E, (2) 

expression of c-kit (CD117), the stem cell factor (SCF) receptor, and (3) expression of 

cytoplasmic granules containing many different bioactive mediators like histamine, serine 

proteases, and heparin3,4. MCs are ubiquitously distributed in tissues, especially those at 

the interface with the external environment, such as skin, airways, and gastrointestinal 

system5-7.  MCs appear to localize near blood vessels and nerve endings 8. Based on their 

strategic location, MCs are among the first cells to initiate defense reactions against 

invading pathogens, and they play a pivotal role in the innate and acquired immunity9,10. 

Developmentally, MCs, like other immune cells, originate from hematopoietic CD34+ 

stem cells (HSC) in the bone marrow11. At a key point during development, the immature 

CD34+ stem cells leave the bone marrow and migrate into the peripheral tissue where they 

further differentiate into mature MCs and acquire their specific phenotype12,13.  

Many factors can influence mast cells’ differentiation, maturation, migration, and 

function, such as tissue microenvironment, activating factors, and cytokines milieu14-16 . 

Stem cell factor (SCF), the ligand for c-kit, is produced by many cells in tissue, including 
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MCs. SCF promotes mast cells’ development, survival, adhesion, and proliferation in 

human and mice17. Furthermore, SCF can also regulate the release of mediators from MCs 

granules after activation18,19. The binding of SCF to its surface receptor on MCs induces 

phosphorylation of tyrosine kinases, leading to the activation of multiple signaling 

pathways, including phosphatidylinositol-3 phosphate kinase (PI3K), and mitogen 

activating protein kinase (MAPK), that promote mast cells survival and inhibit apoptosis. 

These factors make SCF a master regulator for MCs biology 20,21. Other cytokines such as 

IL-3 act as driver for MCs growth and differentiation in mice6. Interleukin-4 (IL-4) is 

another factor that plays an important role in the development of MCs in humans. IL-4 

does not work alone in human MCs, but it can work synergistically with SCF to enhance 

mast cells survival, proliferation, and release mediators22. 

Tissue MCs encompass a heterogeneous cell population in mice and humans11. The 

heterogeneity and plasticity is shaped by the intrinsic microenvironment that is found in 

tissue, which modulates the feature and morphology of MCs6,23. Two distinct populations 

of MCs have been recognized in mice: mucosal mast cells (MMCs) and the connective 

mast cells (CMCs). The characterizations of these two MCs are based on tissue location, 

histochemical staining, and protein content24. CMCs can be distinguished from MMCs by 

their expression of tryptase and chymase, and tend to bind to heparin, whereas chymase is 

the only protease present in MMCs, which tend to bind to chondroitin sulfate. In an analogy 

to the classification in murine, human MCs can also be divided into two types depending 

on the storage of proteases in the intracellular granules: MCT-type contain only tryptase in 

their cytoplasmic granules and MCTC- type contain both tryptase and chymase in their 
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granules25,26. MCT cells are present in the airway, and gastrointestinal tract, whereas MCTC 

cells are found in the skin, as well as in peritoneum, synovium, and perivascular tissue 24. 

1.1.1 Activation of mast cells and signaling pathway 

Mast cells express a large array of receptors that can be activated in response to 

immunological or non-immunological triggers resulting in the granule release of many 

different inflammatory mediators, such as histamine and serine proteases, that are stored 

in cytoplasmic granules. Activation also results in biosynthesis of lipid mediators, like 

Prostaglandin D2 (PGD2) and Leukotrienes (LTCs), as well as de novo synthesis of various 

cytokines and chemokines26,27. The level and nature of MCs response can be affected by 

growth factors and microenvironmental conditions that impact the expression and 

functionality of receptors and the signaling pathways they regulate6,28.The best 

characterized mechanisms of mast cells activation is the immunoglobulin E (IgE)-

associated allergic inflammation mediated by the high affinity Fc receptor for IgE, which 

are receptors expressed at high levels on the surface of MCs29.  

FcεRI is a heterotetramer comprised of an IgE-binding α subunit, a signal 

amplification β subunit, and two signal transducing γ chains30. Aggregation of FcεRI with 

multivalent antigen binding to IgE attached to FcεRI leads to phosphorylation-dependent 

activation of src kinase particularly Lyn and Fyn that regulate signal transduction31-33.  

Phosphorylation of an immunoreceptor tyrosine based activation motif (ITAM) in the g 

chains by Lyn kinase recruits spleen tyrosine kinase (Syk) and the subsequent formation 

of a large signaling complex34-36. Syk is an essential protein in FcεRI signaling. Syk-

deficient mast cells are defective in their ability to degranulate37.  Once activated, Syk 
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phosphorylates the protein adaptors LAT1, and LAT2, leading to formation of a large 

macromolecular complex36. FcεRI activates multiple pathways, including the PI3K 

pathway31. Other molecular signaling induced by FcεRI engagement includes MAPK, 

phospholipase C (PLCγ), which in turn regulates the activation of protein kinase C (PKC) 

through the generation of secondary messengers (1,2- diacylglycerol inositol-1,4,5 

triphosphate, and cytosolic Ca2+). PI3K and PLCγ pathways are important for multiple 

signaling events such as activation phospholipase D (PLD), PLA2, as well as calcium- 

dependent PKC isoforms, and for their role in the regulation of the nuclear factor of 

activated T-cells (NFAT) transcription factors through calcium binding proteins such as 

calmodulin 6,31. These ultimately result in two major effector responses: the first response 

is the immediate degranulation and the second response includes the newly–synthesized 

products of arachidonic acid metabolism, and various cytokines, chemokines, and growth 

factors38.  

Interestingly, the level of expression of FcεRI depends on the level of circulating 

IgE39. The existence of FcεRI on the surface of MCs is unstable, and it is affected by the 

presence of IgE levels40. The binding of IgE to FcεRI induces accumulation as well as 

stabilization of FcεRI, and protects from degradation which leads to upregulation of FcεRI 

expression41. However, Omalizumab, an anti-IgE drug, leads to down-regulation of FcεRI 

expression42. Omalizumab is a recombinant DNA humanized monoclonal antibody that 

binds specifically to C epsilon on three loci in the same domain  of  the Fc portion on the 

heavy chain of free IgE43.  Omalizumab prevents the binding of free IgE to the FcεRI by 

attaching itself to the same antigenic epitope on IgE44.This interaction causes the down-

regulation of FcεRI expression and the reduction of mediators released from mast cells, 
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which in turn reduces or blocks allergic reaction cascade43,45. MCs can also be activated 

through a variety of other receptors27,46. For example, IgG also have the ability to activate 

MCs through binding to FcγRs, and induce signaling events resembling IgE-FcεRI 

activation that elicits degranulation and de novo production because they share a common 

ITAM- containing γ subunit with FcεRI 20. These receptors can positively or negatively 

regulate MCs, and they play a critical role in the protective immune response to 

pathogens47.  

Another receptor that is found on mast cells is Toll-like receptors (TLRs). These  

are part of the pattern –recognition receptors family that recognizes pathogen-associated 

molecular patterns (PAMPs)6. MCs have been shown to express multiple TLRs including, 

TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, and the activation of these 

receptors by their ligands elicit different MC responses48. For example, lipopolysaccharide 

(LPS) derived from gram negative bacteria stimulated TLR4 result in cytokines production 

without induction of degranulation. On the other hand, TLR2 stimulation by peptidoglycan 

(PG) from gram positive and negative bacteria promotes both degranulation and cytokines 

production31,49.  

The complement fragments like C3a and C5a can also activate MCs through 

binding with C3aR and C5aR, and the outcome of activation leads to degranulation and 

production different cytokines and chemokines20. These receptors are members of G-

protein coupled receptor (GPCRs) family and the expression of these receptors can be 

affected by multiple factors, such as location and microenvironment50. MCs can also be 

triggered via inflammatory products such as chemokines, cytokines, adenosine, and 

sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) through engagement 
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with their receptors. Thus, mast cells can be activated in many ways, indicating a versatile 

role of MCs not only in allergies, but also in other diseases31.  

1.1.2 Mast cells Mediators 

Mast cells are described as secretory cells that have the ability to secrete and 

synthesize a broad spectrum of biologically active products in response to allergic or non- 

allergic triggers14,51. The profile of mediators released by functional MCs is enormous, 

which is reflected in the contribution of these cells in various physiological and 

pathological processes22. Mast cells mediators can be classified into two groups: preformed 

mediators, and de novo lipid and cytokines mediators1. The preformed mediators and lipid 

de novo mediators are released within minutes following the mast cells activation and are 

responsible for the early phase of allergic symptoms such as erythema, edema, increased 

vascular permeability, and smooth muscles contraction52. The preformed mediators are 

packaged within secretory granules that are rapidly released to the extracellular 

environment following mast cells activation53. Releasing these mediators can be driven 

either by classic anaphylactic degranulation (AND) or piecemeal degranulation (PMD) 

depending on the type of stimulus- induced degranulation. Both types of degranulation 

occur in- vivo, ex- vivo, and in- vitro of different species like humans and mice51. AND can 

be mediated by triggering IgE- signaling pathway, which plays an important role in the 

pathogenesis of allergic inflammation54. AND consists of fusion events between the 

granule membrane and the plasma membrane or fusion granule to granule, resulting in 

release of the whole granule contents outside the cells55. In contrast to AND, PMD plays 

an important role in multiple chronic diseases like cancer, cardiovascular disorder and 
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others. PMD is involved in the partial release of granule contents without granule to granule 

or granule to plasma membrane combination, leading to selective contents discharge48,51. 

 One of the most important pre-formed mediators is histamine, a short-lived 

biogenic amine, that is synthesized by decarboxylation of histidine through the action of  

histidine decarboxylase (HDC)56. MCs express four histamine receptors designated as H1, 

H2 , H3 and H4 receptors that belong to G protein coupled receptors57. The binding of 

histamine to its receptor can produce both pro-inflammatory and anti-inflammatory effects, 

which depend on the histamine receptor subtype and the cells stimulated type58. H1-

mediated MCs activation can cause bronchoconstriction, vasodilatation, mucous secretion, 

edema, and inflammatory response which contributes to the symptoms of allergic disease59. 

On the other hand, the H2 receptors regulate gastric secretion and vascular dilatation60. The 

H3 receptors are found mainly in the central nervous system (CNS) and play a significant 

role in neuroinflammation61, whereas the H4 receptors have been shown to contribute to 

allergic responses. Histamine interaction with H4 receptors on mast cells causes the release 

of different inflammatory mediators like various cytokines and chemokines which mediate 

chemotaxis57. Another important constituent of MC granules are proteoglycans, such as 

heparin, and chondroitin sulfate. These negatively charged, highly sulfated structures play 

a pivotal role for granules organization and storage of protease62.  

Mast cell granules also contain many types of lysosomal enzymes, such as β- 

hexosaminidase, that present in mast cell granules of all subtypes and species63. Thus, the 

release of this enzyme can be used to quantify mast cell degranulation51,64. It is worth noting 

that MCs granules contain proteases, including tryptase, chymase, and carboxypeptidase, 

which make up 30-50 % of the total protein contents of MCs granules65,66. MCs proteases 
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are positively charged molecules that combine with the negatively charged proteoglycans 

in an interaction that stabilizes these enzymes and regulates their function31, 66. Numerous 

studies have revealed the detrimental and protective role of MC proteases. These enzymes 

have been implicated in numerous conditions, such as arthritis, allergic inflammation, and 

tissue remodeling66.  However, they also play a protective role against various pathogens65.  

The de novo lipid mediators, or eicosanoids, are produced within minutes after MCs 

activation, such as PGD2, leukotrienes B4 (LTB4) and (LTC4)
48. The bioactive eicosanoids 

are involved in allergic and other inflammatory conditions67. These mediators are derived 

from the release of arachidonic acid from the membrane phospholipids by the action of 

cytosolic phospholipase A2 (cPLA2) through two different pathways68. Prostaglandins are 

produced by the conversion of arachidonic acid with the action of cyclooxygenase (COX). 

There are two isomerase forms of this enzyme that are expressed on mast cells. The 

constitutive (COX-1) and the inducible (COX-2) forms69. These enzymes catalyze the 

formation of the precursor of prostaglandin H2 (PGH2), which represents the common 

precursor for all prostanoids forms, such as PGD2, PGE2, and PGF2
70. Similar to 

prostaglandins, the generation of leukotrienes occurs through the conversion of arachidonic 

acid by 5-lipoxygenase (5-LOX) to 5 S-hydroperoxy-6, 8- trans-11, 14- cis-

eicosatetraenoic acid. The product of this conversion is then converted to leukotriene and 

its products, such as LTA2, LTB4, and LTC4
71. Collectively, these lipid mediators that are 

produced by MCs can provoke bronchoconstriction, increased vascular permeability, 

smooth muscles contraction, mucus secretion, cellular infiltration and 

immunosuppression72.  
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Additionally, MCs also synthesize a wide spectrum of cytokines and chemokines 

in the hours following mast cells activation73,74. Some of these cytokines are stored in 

secretory granules, such as TNF, and IL-4, and are immediately released upon activation75. 

Many others, such as IL-1, IL-2, IL-6, IL-13, CCL5, and CCL8, are newly synthesized 

after the transcriptional activation. These inflammatory products are responsible for the 

late phase-response of allergic reaction. This response is characterized by infiltration of 

tissue with further cells recruitment such as eosinophils, neutrophils and lymphocytes6,76.  

1.2 Allergic Disease 

Allergic responses are common chronic conditions that cause a significant negative 

effect in the quality of patients’ lives worldwide. These conditions, including asthma, food 

allergy, allergic rhinitis, and atopic dermatitis, affect people of all ages77. The global 

prevalence and the complexity of allergic responses have been continuously increasing due 

to environmental changes, such as industrialization, urbanization, improvements in 

hygiene, and developments in technology78. Additionally, multiple susceptibility factors 

contribute to the development of these illnesses, such as genetic predisposition and the 

amount of allergen exposure79. The World Health Organization estimates that asthma 

affects approximately more than 300 million people globally and 8.4% of the U.S 

population80,81. Allergic rhinitis affects more than 400 million people worldwide and more 

than 15% of the U.S population. Moreover, 2-4% of people in the United States suffer from 

food allergy82,83.  

To date, the options for the treatment for allergic inflammation remains inadequate 

and new approaches are in demand84. Basically, an allergic reaction is characterized by an 
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inappropriate immune response toward an inherently harmless antigen, known as an 

allergen, which results in different forms of allergic disease85. The clinical manifestations 

of allergic reactions varies depending on the organ affected86,87. For example, individuals 

with asthma suffer from airway hyperreactivity, reversible airflow obstruction, and 

bronchospasm88, while individuals with allergic rhinitis suffer from itching, sneezing, and 

local mucosal edema, which all together lead to blockage and irritation of the nasal 

passages89. Importantly, MCs play a primary role in the pathogenesis of  the IgE- mediated 

type –I allergic reactions in the respiratory airways, skin, and gastrointestinal tract90. 

The classical allergic response can be divided into three phases: sensitization, early 

phase, and late phase reaction. The sensitization stage of the allergic reaction starts with 

the production of specific IgE due to exposure to exogenous allergens – like pollen, mites, 

and others– that pass into the body via different routes such as inhalation, ingestion, and 

skin contact52. This allergen is processed into small fragments by dendritic cells (antigen-

presenting cells) that present these fragments to T helper-2 (Th2), leading to the production 

of cytokines such as IL-4, IL-3, and IL-5, which cause B- cells to switch class to synthesize 

IgE22. Once synthesized, IgE circulates in the blood and sensitizes tissue MCs by binding 

to FcεRI.  

The early phase response of an allergic reaction occurs within minutes of the re-

exposure to the same allergen binding to the IgE attached to FcɛRI, which causes the 

crosslinking of the receptor and activates MCs44. The activation of MCs leads to 

degranulation and the release of histamine, tryptase, lipid mediators, and platelet activating 

factor. These mediators can have an immediate effect on epithelial, smooth muscles, 

endothelial, and nerves cells. Therefore, early phase symptoms can produce a variety of 
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effects, including increased epithelial permeability, mucous production, smooth muscles 

contraction, vasodilation, and neurogenic signal27. The late phase reaction occurs several 

hours following the antigen challenge, and promotes inflammatory responses with the 

production of mediators, such as chemokines and cytokines production, as well as the 

attraction and  infiltration of leukocytes91. 

1.3 Adenosine 

Adenosine is an endogenous purine nucleoside that has a fundamental role in many 

biological functions, such as the biosynthesis of nucleic acids, cellular energy and 

metabolism, in addition to its role in the regulation of inflammation and the function of the 

immune system92-95. Adenosine is ubiquitously found in every tissue and organ of the 

human body and is formed both intracellularly and extracellularly in response to cellular 

challenge, tissue injury, and inflammation96,97. The formation of adenosine involves mainly 

dephosphorylation of adenosine triphosphate (ATP) through the action of specific enzymes 

such as ectoenzyme apyrase (CD39), and 5`-nucleotidase (CD73). Subsequently, ATP and 

its degradation precursors adenine nucleotides (like ADP) breaks down to adenosine 

monophosphate (AMP) by the action of CD3,  and then converts to adenosine by the action 

of CD7398-100. Alternatively, adenosine is also produced from other sources like hydrolysis 

of S adenosyl homocysteine101. Once formed, adenosine can further undergo multiple 

metabolic pathways; it can be converted to AMP by adenosine kinase (ADK), or it can be 

converted to inosine and hypoxanthine by ecto-adenosine – deaminase (ADA) and then 

broken down to uric acid by xanthine oxidase102-104. This pathway of adenosine metabolism 

helps the body to keep the physiological level of adenosine low under homeostatic 
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conditions105-107. Adenosine levels can also stay in equilibrium through the diffusion of 

adenosine back into the cells by efficient nucleoside transporters (NTs)108. 

These transporters are divided into two categories based on energy requirements as 

well as molecular and functional properties: equilibrative nucleoside transporter (ENT, 

SLC29 gene family), and concentrative nucleoside transporter (CNT, SLC28 gene 

family)99,109. These transporters play a pivotal role in the regulation of exogenous 

adenosine levels at receptor sites and are useful in the treatment of certain diseases such as 

cardiovascular, cancer, and others108,110. CNTs are classified into CNT1, CNT2, and CNT3, 

which mediate unidirectional sodium dependent nucleoside transport across cell 

membranes111. These transporters can be found mainly in the epithelial cells of many 

organs, like the kidney, liver, intestine, as well as in the immune cells112. ENTs are 

classified into ENT1, ENT2, ENT3, and ENT4, and they transport nucleosides molecules 

via bidirectional sodium- independent110. These types of transporters are broadly expressed 

in different tissues, like vascular endothelial, skeletal muscles, heart, brain as well as in the 

immune cells113. ENT1 is considered one of the most efficient membrane transporters in 

controlling adenosine levels. ENT1 can be functionally distinguished from other ENTs as 

it is more sensitive to classic inhibitors such as nitrobenzylmercaptopurine ribonucleotide 

(NBMPR) and dipyridamole. These types of inhibitors are increased the extracellular 

concentration of adenosine and can be clinically used to treat specific diseases, such as 

cardiovascular disease, cancer, and others114,115. 

Adenosine exerts its effect in physiological and pathological conditions through 

binding to transmembrane adenosine receptors of which four exists (A1AR, A2AR, A2BR, 
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and A3AR. All these receptors are coupled to different GTP-binding proteins and play 

differential effect on target cells116. 

1.3.1 Adenosine Receptors 

To date, there are four subtypes of adenosine receptors namely, A1, A2A, A2B, and 

A3 receptors, according to their order of discovery117-119. These receptors are widely 

expressed on diverse cells in a variety of tissues such as brain, heart, lung, skin and immune 

system and their signaling is involved in the regulation of multiple processes such as 

circulation, homeostasis, immune system and inflammation116. Each adenosine receptor 

(ARs) is characterized by pharmacological profile response, tissue specific distribution, 

and in their ability to couple to trimeric-G proteins120. ARs have been cloned in humans 

and many other species, and exhibit the greatest homology between the A1A and A3AR 

(49% sequence identity) and the A2A and A2B receptors (59% sequence similarity)121-123. 

Numerous studies have indicated adenosine and its receptors as a therapeutic target in 

treating a variety of diseases, such as neurodegenerative diseases, cardiovascular diseases, 

diabetes, and cancer124.  

Structurally, ARs belong to the class A (rhodopsin-like) G protein-coupled receptor 

(GPCR) family that is well conserved among vertebrates125. These receptors share many 

structural features, including an extracellular amino terminus (N-terminus), an intracellular 

carboxyl terminus (C-terminus), and a conserved transmembrane structure comprising 

seven α helices. Each helix consists of 20-27 amino-acids, and connects by three 

intracellular loops and three extracellular loops120. Both N-terminus and C-terminus have 

posttranslational modifications such as glycosylation sites that are found in the 
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extracellular N-terminus, which play an important role in maintaining the ligand binding 

without changing its properties120,126. 

 On the other hand, the cytosolic C-terminus of these receptors contains  

phosphorylation at the serine and threonine residues and palmitoylation sites that are 

important for protein kinases and receptor desensitization as well as internalization 

mechanism120. Each AR subtype exhibits different affinities to adenosine and its agonist. 

For example, A1, A2A, and A3 have a high affinity for endogenous adenosine which can be 

activated at nanomolar concentrations of adenosine, while A2B receptor has a low affinity 

for adenosine and its analogues which, requires micromolar concentration of adenosine to 

be activated116,127.  

The cellular response to adenosine is highly dependent on the adenosine receptor 

subtype and the type of activated G-protein on target cells which can lead either to 

inhibitory or stimulatory effects116,128. A1, and A3 receptors are considered as inhibitory 

receptors because they bind to the Gi/o protein, and inhibit adenylyl cyclase (AC) which 

consequently decreases cyclic AMP (cAMP) levels129. This results in inhibition of the  

protein kinase A (PKA) and phosphorylation of the cyclic AMP response element binding 

protein (CREB). However, the stimulatory receptors such as A2A, and A2B receptors bind 

to Gs protein, and activate the AC, leading to an elevation of cAMP production, activation 

of PKA, and CREB phosphorylation119,130. Thus, depending on the dominant receptor in a 

specific tissue or cell types, cAMP can be regulated. Moreover, stimulating adenosine 

subtypes can activate effector mechanisms other than AC, such as PI3K, MAPKs, and 

extracellular receptor signal- induced kinase (ERK) in different cell types, and can affect 

various aspect of cellar processes, like apoptosis, metabolism and differentiation131,132.  
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1.3.2 Biological characteristics of A2A receptor 

The human A2A receptor gene is located on the chromosome 22q13 with an 

approximate molecular weight of 44.7 KDa101. Although A2A receptors share a 

commonality in their seven transmembrane helices, both amino as well as carboxy termini 

are variable to the other adenosine subtypes133. One of the differences is the presence of 

four disulfide bonds in the extracellular domain that are essential for the stabilization and 

maintenance of the restricted conformation of the seven transmembrane helices134. Another 

key difference is that the intracellular C-terminus of A2A receptor consists of 122 amino 

acids long, whereas other receptor subtypes consist of 30-40 amino-acids135. Furthermore, 

the C-terminus of A2A receptor lacks canonical cysteine residues at the end of helix eight, 

which are considered as putative palmitoylation sites136. Thus, these differences in the C-

terminus make A2A receptor more flexible and able to interact with other proteins like β-

arrestins, α-actinin, and calmodulin135,137. Similar to other ARs, A2A receptor has 

phosphorylation sites in the intracellular carboxy-terminus such as threonine 298, which 

plays a key role in mediating the short term desensitization of A2A receptor after ligand 

binding138. Additionally, the presence of serine 374 phosphorylation in the intracellular-

terminus has an effect on A2A  receptor-mediated suppression of the dopamine D2 receptor 

agonist binding and signaling139.  

The A2A subtype is broadly found both peripherally and centrally throughout the 

human body. However, its expression appears to be variable in tissues and organs. It is 

widely expressed at higher level in the striatum, the olfactory tubercle, spleen, and the 

immune cells, whereas low levels of A2A receptors are found in neurons outside of striatum, 

glial cells, heart, lung ,and blood vessels120.  It is noted that expression patterns of 
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adenosine subtypes are regulated by several factors such as growth factors, and 

inflammatory stimuli140. In particular, the expression of A2A receptor is highly sensitive to 

alterations in the extracellular environment. The expression of A2A receptor is modulated 

by different stimuli that are involved in the inflammatory milieu such as 

Lipopolysaccharide (LPS) and pro-inflammatory cytokines125. For example, the expression 

of A2A receptor increased after exposing macrophages to LPS, which resulted in the 

limitation of inflammatory response141.TNF, and IL-1 increased the expression of A2A 

receptor mRNA and protein levels on human monocytes THP-1 and enhanced its 

function142.  On the other hand, IFN-γ decreased A2A receptor expression by reducing the 

expression of AC143. 

1.3.3 Signal transduction pathways of adenosine A2A receptor 

The A2A receptor is increasingly recognized as an immunoregulatory effect of 

adenosine in the immune system by preventing exacerbation of hyperactivation of immune 

cells144. Adenosine signals through A2A receptor are one of the most important mechanisms 

to suppress inflammation145,146. The stimulation of A2A receptor induces a variety of 

intracellular signaling by preferentially interacting to a Gs protein. It leads to AC activation 

and elevation of intracellular cAMP levels, which has an anti-inflammatory effect147,148. 

Signaling pathways associated with A2A receptor seem to be different for the peripheral 

system and the central nervous system. The major G-protein engaged with A2A receptor is 

the Gα-s in the peripheral system, whereas the Golf is the predominant protein in the brain 

that binds with A2A receptor149 in the central nervous. The binding of the A2A receptor 

either with Gs or Golf causes the exchange of GDP for the GTP bound to the G protein α 

subunits as well as the dissociation of the βγ heterodimer that allows for the mediation of 
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downstream signaling150,151. Their stimulation can further stimulate AC and increase 

cAMP levels.  

The elevation of cAMP results in protein kinase A (PKA) that phosphorylates and 

activates the cAMP responsive element- binding protein1 (CREB1) on serine residue-

133152. The elevation of cAMP in PKA/CREB1 can mediate gene expression directly by 

interacting with gene promoters or indirectly by inhibiting the transcriptional activity of 

NF- kB, which consequently suppresses the expression of many pro-inflammatory 

cytokines such as  TNF153.  Alternatively, cAMP not only activates PKA, but also activates 

many other proteins, such as exchange proteins activated by cAMP (EPAC), causing 

alteration in the gene expression153.  

 1.3.4 The action of adenosine on mast cells 

Mast cells are multifunctional cells involved in allergies and many other chronic 

inflammatory diseases154. Modulating the activity of these cells plays key roles in allergic 

inflammation. Adenosine modulates the functions of many immune cells that are 

implicated in allergic asthma, such as mast cells, smooth muscles cells and eosinophils155. 

Adenosine regulates the function of MCs through binding with its receptors on the cells 

surface, such as A2A, A2B and A3 receptors156. 

 Elevated levels of adenosine are found in bronchoalveolar lavage (BAL)157.   

Adenosine levels were also raised in adenosine deaminase (ADA) deficient mouse model, 

causing extensive mast cells degranulation and pulmonary phenotype with asthma 

feature156. Prior research has demonstrated that inhalation or intravenous administration of 

adenosine in allergic asthmatics or non-allergic asthmatics subjects results in 
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bronchoconstrictive response101,117. This response is due to the capability of adenosine to 

enhance MCs mediators release, such as histamine and tryptase, that are found at high 

levels in BAL of asthmatics subjects. Adenosine potentiates mediators’ release induced by 

immunological and non-immunological stimuli from rat peritoneal mast cells (RPMCs)158. 

It has also been noted that adenosine has dual effects on lung mast cells and that it can 

enhance mediators’ release at low concentrations of adenosine while inhibit them at high 

concentrations159. This effect of adenosine on mast cells degranulation is believed to occur 

through A3 or A2B receptors160. It has also been shown that adenosine is directly able to 

activate MCs in vivo without additional stimuli159.   

1.4 MicroRNA (miRNA): Structure and function 

MicroRNAs (miRNAs) are small single-stranded, non-coding RNAs of 

approximately 22 nucleotides that function as post-transcriptional regulators of gene 

expression161. MiRNAs exert their function upon binding to 3` untranslated region 

(3`UTR) of the target  messenger RNA (mRNA), thereby reducing protein synthesis by 

either translational suppression or mRNA degradation162. MiRNAs play an important role 

in a variety of physiological and pathological processes and control many cellular 

processes including development, differentiation, metabolism, and apoptosis163. 

Dysregulation of miRNAs expression has been implicated in the pathogenesis of several 

human diseases164. 

To date, it has been estimated that miRNAs can target and regulate the expression 

of at least 60% of the human genes165,166. MiRNAs are highly conserved throughout 

evolution  and initially identified  in Caenorhabditis elegans ( C. elegans) as a negative 



www.manaraa.com

19 

regulator during developmental periods. They have been found in a wide range of 

multicellular organisms like humans, plants, animals, and viruses167. Lin-4 was the first 

miRNA discovered in the C. elegans, which is responsible for silencing the Lin 14 via 

antisense complementary to its (3`UTR) during its development168.  Later, the discovery of 

another small non-coding RNA, miRNA let-7, is found in various organisms like human 

beings and animals. The Let -7 gene binds to a sequence in UTR of Lin-41 mRNA, causing 

translation repression of lin-41 mRNA169. 

 MiRNAs are scattered in diverse regions of the genome that make up for 1-5 % of 

the human genome167,170. MiRNAs are expressed in various tissues and cells. However, 

their expression varies. Some of them are widely expressed, and others display limited 

expression171. Additionally, miRNAs can be found in body fluids, such as plasma and 

serum, and they are able to protect themselves from the action of blood RNAases either by 

existing as exosomes or by forming a complex with lipid -protein carriers, such as high 

density lipoprotein172,173. A single miRNA molecule targets numerous mRNAs, and a 

single mRNA molecule is targeted by multiple miRNAs, which adds complexity to the 

network174. Moreover, miRNAs are able to silence genes by either affecting epigenetic 

mechanisms, such as DNA methylation or histone acetylation, or targeting transcription 

factors175. Therefore, miRNAs are essential molecules that may position well to control 

many chronic diseases, including allergies 174. 

1.4.1 Biogenesis of miRNAs  

Biogenesis of miRNAs in animals consists of consecutive steps of processing that 

are started in the nucleus and end in the cytoplasm with several post-transcriptional 



www.manaraa.com

20 

modifications176. MiRNAs are most commonly transcribed in the nucleus by RNA 

polymerase II, which generates a primary miRNA transcript with a 5`-capped and a 3` 

poly-A-tail177. The pri-miRNA is a long transcript that contains multiple miRNA sequences 

that are processed by a microprocessor complex formed by RNAase III endonucleases 

enzyme, Drosha, and a double-stranded-RNA binding protein DGCR8 (DiGeorge 

syndrome critical region gene8), which produces ~ 65 nucleotides long hairpin structures 

called precursor miRNA (pre-miRNA)178. The pre-miRNAs are exported from the nucleus 

into the cytoplasm by an exportin RanGTP complex and then cleaved by RNase III 

endonuclease Dicer, resulting in a small-double stranded RNA duplex179. Depending on 

the thermodynamic stability of the base pairs at the 5` of two strands, one of these strands 

is selected to be the mature functional strand (guide strand), whereas the other strand 

(passenger strand) is rapidly discarded180. The nomenclature of mature miRNA is 

determined by the direction of the miRNA strand. The mature miRNA can be derived from 

either 5`end or the 3`end of the precursor’s duplex and are called miRNA-5p and 3p, 

respectively179. Mature miRNA (5` and 3` strands miRNA) is preferentially loaded into a 

RNA induced silencing complex (RISC) containing Argonaute (AGO) proteins,  and the 

selection of one of these strands is based on the lower stability of base pairing in the second 

and fourth nucleotides at the 5` ends of the miRNAs duplex or at 5` U at nucleotide position 

1180,181. After incorporation into active RISC complex, miRNAs bind with their 3`UTR 

mRNA molecules.  

The mechanism of posttranslational silencing depends on the complementarity 

between miRNA and its target mRNA. When the complementarity between miRNA and 

its target mRNA is an exact, or nearly exact, match to each other, it leads to mRNA 
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degradation. On the other hand, if partial complementarity occurs between miRNA and its 

target, it leads to the inhibition of protein synthesis or the repression of the translation168.  

1.4.2 MiR-155 

MiR-155 is encoded from a primary transcript known as B cell integration cluster 

(BIC) gene, which originally was identified as a common retroviral integration site in avian 

leukosis- virus induced lymphoma182. The conserved region of the BIC gene is located on 

chromosome 16 in mice and on chromosome 21q21 in humans (and it has been shown that 

there is about more than 70% identity between them)183. Although the level of BIC RNA 

is low in healthy lymphoid tissue, BIC/miR-155 is highly increased in human tissue when 

Hodgkin or children`s Burkitt lymphoma is present. The activation of the BIC gene causes 

upregulation of c-myc oncogene that accelerates the pathogenesis of lymphomas and 

leukemias, implying it plays a critical role in disease progression and pathology184. MiR-

155 was identified as oncomiR and is involved in the processes of carcinogenesis for 

various cancer185 . MiR-155 serves a crucial role in numerous cellular processes, such as 

proliferation, differentiation, apoptosis, and metabolism186.  

The dysregulation of miR-155 has been observed in many pathological disorders, 

such as cancer, cardiovascular disease, and autoimmune disorder187. MiR-155 has distinct 

expression in cells of hematopoietic origin. Many studies have shown that miR-155 

expression is high in hematopoietic cells’ progenitors than in mature hematopoietic cells 

including granulocytes, lymphocytes and monocytes188. However, the expression of miR-

155 is upregulated in these cells after exposure to a variety of inflammatory stimuli, 

implying a potential  role  in mediating inflammation and immune response189. It has been 
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demonstrated that miR-155 is increased to high level in B and T cells following 

engagement with its receptor and that it plays an important role in the effector function of 

these cells190. In this regard, miR-155 deficient B cells displayed as defective in germinal 

center formation and antibody class switching, which resulted in a defective humoral 

immune response to T cells-dependent antigenic stimulation191.  Mechanistically, PU.1 was 

found as a functional target of miR-155 in B cells that act as a negative regulator in 

antibody isotype switching192. In addition, the enzyme activation-induced cytidine 

deaminase (AID) is another important target of miR-155, which is required for high-

affinity IgG antibody in antigen-activated B-cells193.   

Furthermore, high levels of miR-155 have also been found in the innate immune 

cells like macrophages and monocytes stimulated with various inflammatory stimuli194. 

MiR-155 plays important role in the macrophage polarization. The generation of 

proinflammatory phenotype of macrophages M1 is associated with upregulation of miR-

155, whereas down regulation of miR-155 is associated with the generation of anti-

inflammatory phenotype of macrophage M2, suggesting a regulator role of this molecule 

in these cells185.  

1.4.3 MiR-155 involvement in allergic disease 

 Allergic inflammation is an excessive and inappropriate immune response that is 

associated with marked histologic changes as well as the alteration of the expression of 

numerous genes and proteins. MiRNAs have been shown to serve as a posttranscriptional 

silencer of genes’ expression that regulate multiple facets of cellular processes, and they 

are directly associated with many pathological conditions like allergy195.  
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Dysregulation of miRNAs has been reported in asthma patients and in different 

models of asthma-like lung inflammation196. The presence of quantifiable amounts of 

miRNAs in biological fluids from asthma and other allergic diseases were considered as a 

potential biomarker for diagnosis, prognosis, and therapeutics for immune-related 

disease197. MiRNAs are expressed in different tissues and cells that contribute to the 

allergic tissue inflammation. MiRNAs have different expression profiles between healthy 

patients, human biopsy specimens and experimental models in asthma, eosinophilic 

esophagitis, and contact dermatitis80. 

 One of these deregulated miRNAs is miR-155, which plays a role in allergen-

induced model of asthma80. MiR-155 is greatly increased in a variety of activated cells and 

has a significant impact on the biology of different immune and inflammatory cells 

involved in allergic disease 185. Inhibition of miR-155 was demonstrated to attenuate the 

clinical manifestation of allergic diseases, such as suppression of eosinophilic 

inflammation, mucus hypersecretion, and Th2 cells and their cytokines (IL-4, IL-5, and IL-

13)185. Thus, the suppression of miR-155 expression could be a potential strategy for the 

management and treatment of allergic reactions. 

1.5 The role of Resveratrol in allergic disease 

Resveratrol (3,4`,5 trihydroxystillbene) is an active polyphenolic phytoalexin 

compound that found in a variety of plant species, such as grapes, berries, and peanuts198. 

The chemical structure of Resveratrol consists of two aromatic rings linked by a methylene 

bridge199. Resveratrol exists in two forms: cis and trans- isomers, of which the latter is more 

abundant, stable, and biologically active200. Resveratrol has garnered much attention for its 
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known health potential because of its remarkable pharmacological properties, such as anti-

cancer, anti-oxidant, cardioprotective, immunoregulatory and anti-inflammatory 

effects201,202. Resveratrol exhibits anti-inflammatory effects by the inhibition of the 

secretion and release the pro-inflammatory mediators from immune cells following 

exposure to different stimuli by affecting on transcriptional factors such as nuclear factor-

kappa B (NF-kB) and activator protein-1 (AP-1)203. It has been shown that Resveratrol 

inhibits LPS-induced inflammation of RAW264.7 macrophages204. In addition, it also 

shows an inhibitory effect on COX-1 and COX-2 as well as lipoxygenase catalytic activity, 

which leads to the suppression of the prostaglandins and leukotrienes production205. 

Numerous studies have described the anti-allergic effects in different animal models of 

asthma by suppressing airway hyperresponsiveness, eosinophilia, and mucous 

hypersecretion206,207. Resveratrol has also demonstrated the anti-allergic action through the 

inhibition of mast cells degranulation, which mediates via suppressing the expression 

levels of Syk, suggesting the important role of Resveratrol in the treatment of allergic 

diseases208. 
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CHAPTER 2

THE EFFECT OF A2A RECEPTOR IN THE REGULATION OF 

ALLERGIC MEDIATORS FROM HUMAN SKIN MAST CELLS 

2.1 Background  

  Mast cells are best known as the principal effector cells in allergic diseases via a 

mechanism, including aggregation of FcɛRI with multivalent antigen. This results in 

releasing various allergic mediators such as pre-stored mediators like histamine, serine 

protease, and de novo synthesis of lipid mediators and cytokines that play a detrimental 

role in the elicitation of allergic symptoms209,210. 

 Adenosine is an endogenous purine nucleoside that plays a fundamental role in the 

modulation of numerous cellular functions involved in the immune and inflammatory 

responses211,212. Adenosine is released into the extracellular milieu under physiological 

conditions and at higher levels during pathological condition like hypoxia, tissue injury, 

and inflammation213. Adenosine exerts pro-inflammatory and anti-inflammatory effects 

through ligation to various receptors, which have been denoted A1, A2A, A2B, and A3 

receptors214. Adenosine has been known to play an important role in allergic asthma, in 

part through its ability to modulate mast cells activation, in response to challenges, with a 

variety of stimuli101,156. Adenosine and its analogues can enhance MCs degranulation and 

evoke proinflammatory cytokines through interaction with A2B and /or A3 receptors, 

implying the proinflammatory effects of adenosine on mast cells215. However, a substantial 

body of evidence points toward the predominant role of A2A receptor in mediating the 
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inhibitory effect on immune and inflammatory processes in different preclinical models of 

inflammation like asthma, chronic obstructive pulmonary disease (COPD) and acute lung 

injury216,217. In addition, adenosine, acting via A2A receptors, suppresses the production of 

pro-inflammatory cytokines in different cell types218. The ability of A2A to exert anti-

inflammatory pathway may be attributed to its action as a Gs-protein coupled receptor, 

which ctivate adenylate cyclase (AC) and increase the intracellular cAMP 

concentration104,219. The anti-inflammatory role generated by A2AR has been demonstrated 

in- vitro and in- vivo studies using A2A selective agonist, CGS-21680, or by using mice 

carrying genetic deletion of A2AR or selective antagonist of A2A receptor which suppressed 

the anti-inflammatory properties220. 

Modulating adenosine receptors expression is important in regulating many 

inflammatory and immune systems.221 Adenosine receptors can be regulated in response 

to various factors that are present in the local milieu, such as growth factors and the 

presence or  absence of inflammatory stimuli140. In this regard, A2A receptor expression is 

upregulated in response to Th1 cytokines like TNF, IL-1, and LPS in many immune 

cells116,141,222 . Mast cells have been reported to express A2A, A2B, and A3 but lack A1 

receptors with different level of expression depending on the mast cells origin223. 

Nevertheless, regulation of adenosine receptors expression and function in mast cells that 

are continuously expressed FcɛRI remains obscure. 

 In the present study, we investigated the role of adenosine receptors subtypes, 

particularly A2A receptors on the regulation of allergic mediators from human skin mast 

cells. We also investigated the effect of FcɛRI signal on the expression and function of 

adenosine receptor subtypes in human skin mast cells to further understand the interaction 
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between FcɛRI and adenosine receptors. We reported that A2A receptor has no effect on 

FcɛRI-induced degranulation or PGD2 production. However, A2AR inhibited FcɛRI– 

induced pro-inflammatory cytokines production from human skin mast cells. More 

importantly, cross-linking FcɛRI modulates the expression and function of adenosine 

receptors. Sub-threshold stimulation of FcɛRI leads to up-regulation A2A and down-

regulation A3 receptors at the mRNA. The functional consequence is that mast cells with 

altered A2A and A3 receptors expression produce significantly more intracellular cAMP, 

which is known to inhibit mast cell activation.  We also show that up-regulation of the A2A 

receptors by sub-threshold of FcɛRI leads to more pronounced inhibition of TNF by 

adenosine. Our results demonstrate that A2A receptors play a vital role in the regulation of 

inflammatory mediators from human skin mast cells and could be a therapeutic target for 

treating allergic disease.  

2.2 Materials and methods  

 The methods detailed in this study were designed to investigate the effect of A2A 

receptors on the regulation of allergic mediators from human skin mast cells and to address 

the role of FcɛRI signals on the modulation of adenosine receptors in order to further 

understand the interaction between them.  Studies were performed in human skin mast cells 

that were isolated in accordance with the University of South Carolina Internal Review 

Board (IRB). 

2.2.1 Isolation and Purification of Mast cells  

Human skin mast cells were isolated from normal human skin tissue that was taken 
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from donors who underwent surgical operation. These tissues were obtained from the 

Cooperative Human Tissue Network of the National Cancer Institute, as approved by the 

Human Studies Internal Review Board at the University of South Carolina. After removing 

the fat from tissue, the residual tissue was cut into small strips and minced, then the minced 

tissue was digested with different proteolytic enzymes, such as Collagenase type 2 

(Worthington Biochemical, Lakewood, NJ), and hyaluronidase and DNase I (Sigma-

Aldrich, St. Louis, MO), for 3x 1 hour in HBSS wash buffer (1× HBSS, 0.04% NaHCO3, 

1% fetal bovine serum, 1% HEPES, 0.1% CaCl2) that contained amphotericin B and 

Antibiotic/Antimycotic solution. After each enzymatic digestion, the dispersed cells were 

collected by filtration through 40 µM nylon cell strainers, washed, layered over Percoll 

gradient, and centrifuged. The cells were collected from buffer/Percoll interface and re-

suspended at 5x105 cells /ml in serum- free X-VIVO15TM media (Lonza, Walkersville, 

MD) containing 200 ng/ml of recombinant human stem cell factor (SCF) (PeproTech, 

Rocky Hill, NJ). The cells were split in 24-well plates and maintained under standard 

culture conditions (37°C, 5% CO2) with weekly medium changes. The  purity of primary 

cultured cells were assessed by using metachromatic staining with acidic toluidine blue 

and flow cytometry for the surface expression of FcɛRI. After the purity reached 95-100%, 

the cells were used for experiments between 8-12 weeks. 

2.2.2 Sensitization and activation of mast cells 

Mature human mast cells were sensitized by overnight incubation in X-VIVO15 TM  

media containing chimeric human IgE-anti-NP (human Fc + mouse Fab) (clone JW8/1; 

AbD Serotec, Raleigh, NC) at 1 µg/. Then the cells were activated by cross-linking FcɛRI  

with a multivalent antigen, hapten 4-hydroxy-3-nitrophenylacetyl conjugated to bovine 
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serum album (NP-BSA; Biosearch Technologies, Novato, CA) (100 ng/ml) at 37°C in X-

VIVO 15 TM media containing100 ng/ml SCF or Tyrode’s buffer (135 mM NaCl, 1 mM 

MgCl2, 20 mM Hepes, 5 mM KCl, 1.8 mM CaCl2, 5.6 mM glucose; pH 7.4, 0.05% bovine 

serum album). The cells were washed to remove unbound IgE, re-suspended at 106 cells/ml 

in X-VIVO 15™ media or in Tyrode’s buffer. Mast cells were pre-treated with 5′-N-

Ethylcarboxamidoadenosine (NECA), Sp-cAMP triethylammonium salt (S)- Adenosine, 

cyclic3`,5`-(hydrogenphosphorothioate) triethylammonium, and Rp-cAMP, 

triethylammonium salt (R) Adenosine, cyclic 3`, 5`-(hydrogenphosphorithioate 

triethylammonium, CGS-21680(4-[2-[[6-Amino-9-(NethylDribofuranuranuronamidosyl)-

9H-purin-2-yl]amino]benzenepropanoic acid hydrochloride, ZM241385 (4-(2-[7-Amino-

2-(2-furyl)[1, 2, 4]triazolo[2,3-a][1, 3, 5]triazin-5-ylamino] ethyl)phenol), (all from Tocris-

Cookson, Ellisville, MO) for 1 h at 37°C. DMSO was used as the vehicle (Sigma-Aldrich, 

St. Louis, MO), and then the cells were activated with 100 ng/ml NP-BSA for the indicated 

amount of time. 

2.2.3 β-Hexosaminidase and PGD2 assays 

Human skin mast cells were incubated with anti-NP-IgE overnight. After the pre-

incubation period, the cells were washed, re-suspended, and stimulated with NP-BSA for 

30 min at 37 °C in Tyrode’s buffer. The degranulation reaction was stopped by placing the 

sample tubes on ice for 10 minutes. The cells and buffer were centrifuged to separate the 

supernatant from the pelleted cells. The cells were lysed with same volume of 1% Triton 

X-100. To assay degranulation, the activity of the secretory granule-associated enzymes β-

hexosaminidase was measured in the supernatant and cell lysate by measuring the release 

of p-nitrophenol from the hydrolysis of p-nitrophenyl N-acetyl-β-D-glucosaminide 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429864/#R5
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(pNAG; Sigma-Aldrich, St. Louis, MO) as described224,225. 5 µl of supernatant or cell lysate 

were incubated with 45µl of 1 p-NAG in a 96-well plate at 37 °C for 1 hour. The reaction 

was terminated by adding 150 µl of 0.2 M glycine (PH 10.7), and the absorbance was read 

at 405 nm with a BioTek Synergy HT microplate reader (BioTek, Winooski, VT). The 

results were expressed as a percentage of total β-hexosaminidase activity present in the 

cells, which was calculated by using the formula: % β hex release = 

((supernatant)/(supernatant + lysate)) × 100. The amount of PGD2 in the supernatant was 

measured with a commercial enzyme immunoassay kit (Cayman Chemical, Ann Arbor, 

MI) according to the manufacturer’s instructions. 

2.2.4 Cytokines ELISA 

Human skin mast cells were pre-incubated with anti-NP-IgE as described in the 

previous sections. The cells were activated with 100 ng/ml NP-BSA at 37 °C in X-

VIVO15TM media containing SCF and 100 µg/ml soybean trypsin inhibitor (SBTI; Sigma-

Aldrich, St. Louis, MO). After 24 hours of incubation, the cells and media were separated 

by centrifugation (2000 rpm x 5 min). TNF secretion in the supernatant was measured by 

enzyme linked immunosorbent assay (ELISA) in a 384 well plate as described 226. TNF 

was measured using capture (purified) and detection (biotinylated) rat antibodies, and 

serially diluted recombinant cytokine that is common for standard curves (BD Biosciences, 

San Jose, CA). The  plates were developed with substrate, peroxidase 2,2’-azino-bis-3-

ethylbenzthiazoline-6-sulfonic acid, (ABTS; Sigma-Aldrich, St. Louis, MO). The 

absorbance values were read at 405 nm with a BioTek Synergy HT microplate reader 

(BioTek, Winooski, VT) and Gen5 Data Analysis Software. 
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2.2.5 Real-time PCR 

 The RNA from activated mast cells was isolated with the RNeasy Miniprep kit (Qiagen, 

GmbH, Germany), and cDNA was synthesized from RNA using the iScript cDNA 

Synthesis kit (Bio-Rad, Hercules) according to the manufacturer’s protocol. For PCR, 2 μl 

of cDNA was combined with 1 μl of sense and antisense primers (10 μM each) and 12.5 

μl of iQ SYBR® Greens supermix (Bio-Rad, Hercules, CA), which produced a final 

volume of 25 μl. A hot-start protocol (95 °C for 5 min, (95 °C for 30 s, 55 °C for 30 s, 72 

°C for 30 s) x 35 cycles, 95 °C for 1 min, 55 °C for 1 min) was run on a CFX Connect Real 

Time PCR Detection System from Bio-Rad (Hercules, CA). The fold change in expression 

was determined by the 2ΔΔCt method. The oligonucleotide primers used were (5’-3’; 

forward and reverse): A2aAR (5’-cattgcctgcttcgtcct-3’; 5’-gatgcccttagccctcgt-3’; 136 bp; 

NM_000675.4); A2bAR (5’-ctccatcttcagccttctgg-3’; 5’-acaaggcagcagctttcatt-3’; 236 bp; 

NM_000676.2); A3AR: 5’-gggcatcacaatccacttct-3’; 5’-agggccagccatattcttct-3’; 171 bp; 

NM_000677.3 variant 2); GAPDH (5'-caatgaccccttcattgacc-3’; 5’-ttgattttggagggatctcg-3’; 

159 bp; NM_002046.3). 

2.2.6 Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 6.0c for Mac OS 

X, GraphPad Software (La Jolla California USA), and the software is available at  

www.graphpad.com.  

http://www.graphpad.com/
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2.3 Results  

2.3.1 The A2A receptor signals are not required for inhibition IgE- induced human 

mast cell degranulation.  

We had previously shown that adenosine had no influence on IgE-induced 

degranulation at low concentration in human skin mast cells. However, adenosine at high 

concentration significantly inhibited degranulation in response to cross-linking FcɛRI in 

human skin mast cells227. To begin our study, we assessed degranulation by releasing β-

hexosaminidase from mast cells pre-treated with increasing doses of non-selective agonist 

NECA, or DMSO for 1 hour instead 10 minutes in the previous studies, then the cells were 

stimulated for 30 minutes with (100ng/ml) NP-BSA. As seen in (Fig 2.1A), NECA had no 

effect on IgE-induced degranulation in human skin mast cells. However, a significant 

inhibition was only seen in mast cells pre-treated  with NECA at 10 µM with (p< 0.05). 

These findings indicated that longer exposure to NECA (1 hour) did not increase the 

sensitivity of mast cells degranulation to inhibit. We worked to determine that the 

inhibitory effect of NECA was due to specific adenosine receptors signaling, since a lot of 

evidence indicated the role of A2AR in the down- regulation of inflammatory response in 

different immune cells, including lymphocytes, and macrophages222,228. We analyzed the 

effect of the A2A-specific agonist CGS21680 on IgE-induced degranulation in SMC. The 

cells were pre-treated with (0-10µM) of CGS-21680 for 1 hour then the cells were 

challenged with NP-BSA (100 ng/ml) for 30 minutes. CGS-21680 had no significant 

difference on IgE-induced degranulation in mast cells (Figure 2.1B). Additionally, CGS-

21680 inhibited the inhibitory effect of NECA on IgE–induced degranulation in SMCs, 

suggesting that A2A receptor does not play a role in this adenosine action. Adenosine 

receptor subtypes were initially differentiated by their effects on adenylate cyclase 
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activation: A1A, and A3A receptors inhibited adenylate enzyme which lower the cAMP 

accumulation, while A2A and A2B receptors stimulate adenylate and increased cAMP 

levels149. Therefore, we next determined whether alteration in the concentrations of cAMP 

had an inhibitory effect on degranulation. We examined the effect of the activator of Sp-

cAMP in mast cells.  Mast cells were pre-treated with different concentrations Sp-cAMP 

for 1 hour, then the cells were challenged for 30 minutes with 100 ng/ml NP-BSA. Our 

results showed that Sp-cAMP had no effect on IgE- induced degranulation in human skin 

mast cells, and blocked the inhibitory effect of NECA on IgE-induced degranulation in 

SMCs (Figure 2.1C). Thus, alteration in the concentrations of Sp-cAMP had no effect on 

degranulation in SMCs.  Similar data was obtained when pre-treated mast cells with dose-

dependent concentrations of c-AMP antagonist, Rp-cAMP, for 1 hour and the cells were 

stimulated with 100 ng /ml NP-BSA for 30 minutes, showing no effect on IgE -induced 

mast cell degranulation and at the same time preventing the inhibitory effect ( Figure 2.1D). 

Collectively, these findings suggest that Gαs- mediated intracellular cAMP is ineffective 

to inhibit mast cell release β-hexosaminidase by NECA. 

 2.3.2 Role of Adenosine receptor A2A on PGD2 biosynthesis 

To determine the effect of adenosine on the PGD2 production, IgE-sensitized skin 

mast cells were pre-treated with a dose range of adenosine for 1 hour and challenged for 

30 minutes with NP-BSA (100 ng/ml). After the pre-incubation period, PGD2 in the 

supernatant was measured with commercial enzyme immunoassay according to 

manufacturer’s protocol. Adenosine produced a significant dose dependent decrease in 

FcɛRI-induced PGD2 biosynthesis in human skin mast cells (Figure 2.2A). Next, we 

determined if A2A receptor is involved in mediating adenosine inhibited FcɛRI-induced 
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PGD2 production in SMCs. Human mast cells were pre-incubated with different 

concentrations of A2A selective agonist CGS-21680 for 1 hour at 37C and then were 

challenged with NP-BSA (100ng/ml) for 30 minutes. The supernatant was used to measure 

PGD2. In contrast to the finding above,  no inhibitory effect was observed in response to 

selective agonist CGS12680 on IgE–induced PGD2 in mast cells at all concentrations 

examined (0-10µM) (Figure 2.2B). Taken together, these data indicated that A2A receptor 

has no effect on the inhibition of FcɛRI-induced PGD2 in human skin mast cells. 

2.3.3 A2A signaling inhibits FcɛRI-induced cytokines production from human skin 

mast cells 

In addition to triggering mast cell degranulation and PGD2 production, FcɛRI- 

induced cytokines synthesis. To address the role of adenosine or NECA on IgE-induced 

cytokines production in mast cells, we did the following. First, human skin mast cells were 

sensitized with anti-NP-IgE overnight. Following washing, the cells were pre-treated with 

different concentrations of NECA (0-10 µM) for 1 hour and stimulated with NP-BSA (100 

ng/ml) for 24 h. After pre-incubation period, media from human skin mast cells were 

centrifuged and TNF in the supernatants was measured by ELISA. As shown in (Figure 

2.3A), NECA inhibited IgE- induced TNF production in a concentration-dependent manner 

in mast cells compared with control mast cells activated without pre-treated with NECA. 

Significant inhibition occurred at low concentration of NECA (1µM), and reached its 

maximal inhibition at the high concentration (10 µM) (p<0.001), indicating that adenosine 

receptors, particularly, A2A receptors, play a key role in the regulation of TNF production 

in mast cells. To confirm the above findings was due to A2A signals, we pre-treated human 

skin mast cells with different concentrations of CGS21680 (0.001-10 µM) for 10 minutes, 

then activated for 24 hours with NP-BSA, and secreted TNF was measured. The results 



www.manaraa.com

35 

showed that CGS21680 dose-dependently inhibited IgE-dependent TNF production. 

Significant inhibition was seen at 1µM and 10 µM (p< 0.001) (Figure 2.3B). To further 

substantiate this observation, we repeated the same experiment by using specific antagonist 

ZM241388, which blocked A2AR signals. Sensitized human skin mast cells were pre-

treated with ZM241385 (0.001-10 µM) for 10 minutes followed by adenosine (10 µM) for 

10 minutes, and then challenged for 24 hours with NP-BSA (100ng/ml). As seen in (Figure 

2.3C), ZM241385 prevented adenosine-inhibited TNF production. We next determined 

whether elevation of cAMP concentrations could be the mechanism responsible for TNF 

inhibition in SMCs. We first pre-treated human skin mast  cells with different concentration 

of forskolin, which is a compound to increase cAMP production, for 1 hour, and then we 

challenged with NP-BSA (100 ng/ml) for 24 hours. TNF was measured in supernatant by 

ELISA. The results showed that forskolin inhibited TNF production in a dose dependent 

manner (p< 0.05), suggesting cAMP mechanism is responsible for the inhibition of IgE-

induced TNF production (Figure 2.3D). Altogether, these data demonstrated the 

involvement of A2A signals in the inhibition of TNF production by cAMP mechanism in 

human skin mast cells.   

2.3.4 FcɛRI stimulation modulates adenosine receptors mRNA expression   

Many studies have been reported that mast cells expressed A2A, A2B, and A3 

receptors in different species155,229-231. To determine the effect of FcɛRI signals in the 

regulation adenosine receptors in mast cells, human skin mast cells were stimulated with 

anti-FceRI monoclonal antibody, 22E7, in dose-dependent manner for 3 hours. After 

incubation period, mast cells and medium were separated by centrifugation. RNA was 

isolated from mast cells and the qRT-PCR was used to quantify changes in adenosine 
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receptors mRNA. Degranulation was determined by measuring the activity of β- 

hexosaminidase. Investigation of adenosine receptors in human skin mast cells from this 

study revealed that mRNA level of A2A receptor was significantly increased, whereas the 

mRNA level of A3A receptor was decreased in dose-dependent manner. A2B was not 

affected. Our data showed that simulating these cells with 1 ng/ml of 22E7 was sufficient 

to induce a maximal increase in the expression of A2AR mRNA, and decrease A3AR (Figure 

2.4A).  Overlying the normalized data revealed that stimulation FcɛRI with 22E7 at 1 ng/ml 

induces significant changes in A2AR and A3AR with minimal induction of degranulation 

(Figure 2.4B). We further confirmed these finding above in Time-course for FcɛRI-induced 

changes in adenosine receptors. SMCs were stimulated with optimal (100ng/ml) or sub-

optimal (1 ng/ml) concentrations of the anti-FcɛRIα monoclonal antibody 22E7 for 1, 3, 6, 

and 24 hours.  At each time point, we collected total RNA from mast cells and used RT-

PCR to quantify the changes in adenosine receptors expression. A shown in (Figure 2.5A 

and B), stimulating FcɛRI either at optimal or sub-optimal concentrations resulted in an 

increased A2AR and decreased A3AR in a time dependent manner. The maximal increase in 

A2A receptor was observed at 3 hours, whereas the maximal decrease in A3AR occurred at 

6 hours. The changes in A2A and A3A receptors expression appeared to return to baseline 

by 24 hours. A2B receptor did not change at each time point. We also found that mast cells 

degranulation occurred when FcɛRI was stimulated with 22E7 at 100 ng/ml, whereas 

stimulation FcɛRI with 22E7 1 ng/ml did not induce degranulation (Figure 2.5C).  

 Taken together, these data demonstrated that cross-linking FcɛRI regulates the 

expression of adenosine receptors at mRNA levels. To determine if similar changes occur 

when FcɛRI is crossed-linking with NP-BSA, which is more physiologically-relevant 
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stimuli than 22E7, SMCs were primed with anti-NP IgE for 3 hours incubation, then 

challenged with NP-BSA for 3 hours. RT-PCR was used to quantify the changes in the 

adenosine receptors’ expression. The data showed that IgE/Ag cross-linking induced an 

increase in A2AR, decreased A3AR, and A2BR was not affected (Figure 2.6). Thus, cross-

linking FcƐRI with sub-optimal concentration of monoclonal anti-FcɛRI or with 

multivalent Ag, result in altered adenosine receptors by increasing A2AR and decreasing 

A3AR expression.   

2.3.5 Human skin mast cells with increased A2AR and decreased A3AR due to sub-

optimal stimulation of FcɛRI  express increased cAMP   

As observed above, FcɛRI cross-linking stimulation led to increased A2A receptor 

and decreased A3R receptor at mRNA level. These receptor subtypes exhibit differential 

effect signaling by interaction with G- proteins. A2A receptor signals via Gαs-adenylyl 

cyclase-cAMP, whereas A3 receptor signals via Gi-adenylyl cyclase- cAMP. To determine 

if the changes in A2AR and A3 mRNA following low-level stimulation of FcɛRI translated 

to changes at the protein levels, human skin mast cells were stimulated with sub-optimal 

concentration of 22E7 (1ng/ml) for 6 hours, washed and re-suspended in the Tyrode’s 

buffer in the presence or absence of adenosine (10 µM) for 10 minutes. Intracellular cAMP 

was measured by a commercially available kit. As expected, intracellular  accumulation of 

cAMP in mast cells with altered A2AR and A3AR were significantly elevated following 

treatment with adenosine (10µM) compared with  the control cells, indicating the 

predominant role of A2AReceptor in accumulation cAMP following FcɛRI stimulation ( 

Figure 2.7). 
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2.3.6 Efficiency of the up-regulation of A2AR on FcɛRI-induced TNF production in 

human skin mast cells 

To pinpoint the functional significance of A2A receptor upregulation, we next 

determined the sensitivity of human skin mast cells to A2AR-mediated inhibition of 

cytokines production in response to cross-linking FcɛRI. For IgE-induced activation, mast 

cells were sensitized with anti-NP-IgE overnight. Following washing, these cells were 

stimulated with sub-optimal concentration of NP-BSA (1ng/ml) for 6 hours. After washing, 

the cells were pre-treated with adenosine (10µM) for 1 hour. After the pre-incubation 

period, the cells were stimulated with or without IL-33 (10ng/ml) for 24 hours. The cells 

and medium were collected and then centrifuged. TNF was measured in the supernatant by 

using ELISA. As seen in (Figure 2.8), adenosine has a more inhibitory effect on TNF 

production in the cells pre-treated with IL-33 following cross-linking FcɛRI, compared to 

the cells non stimulated with cross linking FcɛRI or with IL-33 alone. Thus, these data 

indicated that up-regulation of A2AR can shift mast cells to anti-inflammatory phenotype.  

2.4 Discussion 

Adenosine has been suggested to play an important role in the pathogenesis of 

allergic asthma232. Mast cells represent pivotal players that contribute in orchestrating 

allergic events through the production of pre-stored mediators from granules, and 

production of lipid mediators and cytokines that are sustained in allergic inflammation36,41. 

Adenosine modulates mast cells release mediators through interaction with its receptors 

that are then expressed on these cells93,160. 

 In this study, we investigated the receptor subtype mediating the suppressive effect 

of adenosine on allergic mediators release from human skin mast cells. We further tested 
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the hypothesis that FcɛRI stimulation modifies adenosine receptors expression. Our data 

show that NECA at physiological concentrations had no effect on IgE- induced 

degranulation in human skin mast cells, but it significantly inhibited IgE- induced 

degranulation at higher concentration. Our finding of the effect of NECA on IgE-induced 

degranulation in SMCs in vitro is consistent with our previous studies159. Although we 

increased incubation period exposure to NECA (1hour) before challenging it with antigen, 

no difference was observed between the cells incubated for 10 minutes in the previous 

studies, or the cells incubated for 1 hour in our study. In contrast, a previous study showed 

that mast cells had biphasic response to adenosine or its analogue in which low 

concentration of adenosine (1µM) can enhance FcɛRI-mediated degranulation in human 

lung mast cells by 25%, whereas using the high concentration of adenosine (1mM) limited 

or decreased mast cell degranulation by 75%159,233. 

 Most of the anti-inflammatory effects of adenosine are produced by the activation 

of the A2A receptor. Therefore, we used a specific agonist of A2A receptor CGS-21680 to 

investigate the role of A2A receptor on IgE-induced degranulation in human skin mast cells. 

Our observation demonstrated that CGS-21680 was unable to inhibit IgE-induced 

degranulation in mast cells. Additionally, activation of the A2A receptor inhibited the 

inhibitory effect of NECA on the IgE-mediated degranulation of human skin mast cells, 

which suggested that A2A receptor is not involved in the inhibition of degranulation in mast 

cells. Our results are similar to the previous studies which demonstrated that A2A receptor 

has no role on Ag/IgE-induced degranulation in BMMCs both in vitro and in vivo234. In 

contrast, other studies demonstrated that adenosine can inhibit IgE-induced degranulation 

in human umbilical cord cells (HUCBMCs) through binding to A2A receptor, suggesting 
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the involvement of the A2A receptor in adenosine-mediated inhibition of degranulation230. 

It was also demonstrated that stimulation A2A receptor plays an important role in the 

suppression of mast cells degranulation in the murine heart and decreasing reperfusion 

injury235. Adenosine can perform a differential function on target cell depending on the 

adenosine receptor expression and G-protein coupled they engaged. The stimulatory 

receptors (A2A , A2B) receptors activate AC through coupling to Gs leading to an increase 

in cAMP accumulation, whereas the inhibitory receptors (A1 and A3 ) inhibit AC by 

coupling to Gi/0 which leads to a decrease in cAMP concentrations149,236.  

We next tested whether cAMP- dependent signaling mediated inhibition of 

degranulation in SMCs. Our data showed that Sp-cAMP specific activator of cAMP had 

no effect on degranulation and prevented the inhibitory effect of NECA on this process.  

Similar data was obtained when pre-treated mast cells with Rp-cAMP, the inhibitor of 

cAMP, showed no effect on IgE-induced degranulation and blocked the inhibitory effect 

of NECA on degranulation. Thus, these data raise the possibility that adenosine receptors 

have no effect to the observed NECA inhibition in mast cells degranulation, indicating that 

intracellular mechanism rather than cAMP is responsible for the inhibition of degranulation 

in mast cells.  

It has been known that adenosine receptors have modulatory pattern following 

interaction with adenosine or analogues on mast cells230, and many explanations have 

clarified the differential effects of adenosine and its analogues on IgE-mediated 

degranulation in mast cells. One of these explanations is that mast cells encompass 

heterogenous cell type that are derived from the bone marrow, and are migrated into the 

peripheral tissues where they acquire various phenotypic properties and functional 
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plasticity in response to dynamic microenvironmental factors which affect the expression 

and functions of cell receptors, including adenosine receptors5. Moreover, the longer 

exposure to adenosine or its analogues and the initiation to degranulation stimulus might 

have an influence on the properties of adenosine receptors and the outcome of adenosine223. 

In addition to degranulation, activation mast cells lead to the release of arachidonic acid 

metabolites like PGD2, which plays an important role in allergic asthma. We determined 

the effect of adenosine in IgE-induced PGD2 production. Our present finding showed that 

adenosine significantly inhibited IgE-induced PGD2 production in human skin mast cells. 

We next examined the effect of A2AR in IgE-induced PGD2 production. We showed that 

CGs-21680 has no effect on FcɛRI induced PGD2 production in a dose-dependent manner, 

suggesting that A2A receptor is not involved in adenosine-inhibited PGD2. It has previously 

been demonstrated that NECA has on effect on IgE-induced lipid mediators in mouse mast 

cells234. Collectively, A2AR signaling has no effect on the early phase response 

(degranulation and PGD2), which occurred within minutes following cross-linking FcɛRI. 

We next investigated the effect of NECA on IgE- induced cytokines production. we 

showed that NECA inhibited Ag/IgE induced-TNF production in human skin mast cells. 

The inhibition of TNF by NECA was seen in the low concentration of NECA, suggesting 

that this effect was due to the high affinity  A2A receptor effect rather than the low affinity 

A2B receptor, which requires high concentrations of  adenosine  to be activated. This 

observation was confirmed when pre-treated mast cells with different concentrations of 

A2A receptor agonist CGS-21680 on IgE-induced cytokines production showed that CGs-

21680 inhibited IgE-induced TNF production.  Further supporting this notion is that this 

inhibition was blocked by using A2A antagonist ZM241385. 
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 We also explored the possible signaling mediated by NECA. We found that pre-

treated human skin mast cells with different concentrations of forskolin inhibited IgE- 

induced TNF production, suggesting that increased cAMP levels are associated with 

suppression of Ag/IgE- induced cytokines production in mast cells.  Our finding of the 

inhibitory effect of A2A receptor on IgE-induced cytokines production are consistent with 

many humans and murine studies that have ascribed an anti-inflammatory effect of the A2A 

receptor in the regulation of inflammatory mediators in many pathological condition237.  

Hue et al. showed that A2A-Gs signaling plays an important role in the inhibitory effects of 

NECA on IgE-induced pro inflammatory cytokines production in murine mast cells234. 

Activation A2A receptor decreased the elevated levels of pro-inflammatory cytokines like 

IL-6,TNF,and IL-8 and increased anti-inflammatory cytokines like IL-10, leading to the 

attenuation of inflammatory status238. 

 Collectively, our data indicated that the inhibitory effect of NECA on IgE-induced 

TNF production is mediated by A2A receptor. We also found that cross-linking FcɛRI 

stimulation in mast cells increased the expression of A2A receptor while concomitantly 

decreasing A3 receptor, but A2B receptor was not affected. It is also noted that maximal 

increase of A2A, and decrease A3 receptors occurs at sub-optimal concentration of 22E7 

with minimal induction of degranulation. We also found that A2AR upregulation reaches 

maximal increase at 3 hours, whereas down-regulation of A3 receptor reaches maximal 

decrease at 6 hours. A2B receptor was not affected at all time points or dose-dependent 

changes. We also observed that the amount of transcripts of these receptors returned to 

baseline at 24 hours.  Our finding also demonstrated that there was an increase in cAMP 

response in cells with upregulation of A2AR and a decrease in A3R in the presence of 
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adenosine, compared with minimal accumulation of cAMP in non-activated cells, 

suggesting that cross-linking FcɛRI causes upregulation of A2A receptor at protein levels. 

It has been recognized that increased intracellular cAMP are associated with inhibition 

mast cell function231.   

Altogether, these data suggest that cross-linking FcɛRI stimulation altered the 

expression of A2A and A3 receptors, not only at mRNA level but also at protein levels.  

Furthermore, up-regulation of A2A receptors led to a more significant decrease of TNF 

production through an increase in cAMP compared with the control cells (p<0.05). It has 

been noted that the potency and magnitude of adenosine can be affected by many factors, 

like receptor density and functionality of adenosine signaling pathways coupled to 

adenosine receptor116. These results parallel to the previously reported changes in A2A 

receptor in different cells types treated with various inflammatory stimuli such as cytokines 

and LPS142,218,239.  In contrast,  a previous study showed that decreased A2A receptor and  

increased A2B receptor in response to IL-4 treatment enhanced the pro-inflammatory effect 

of adenosine on mast cell mediators223.   

The expression of adenosine receptors are markedly sensitive to alteration in the 

local milieu, which reflects the capacity of adenosine to function as both pro-inflammatory 

and anti-inflammatory mediator149. Thus, modulation of adenosine receptors could be one 

strategy to treat various inflammatory diseases217. 

 In conclusion, this study demonstrates that adenosine inhibits FcɛRI-induced TNF 

production from human skin mast cells.  A2A signals are involved in the inhibitory effect 

of adenosine in FcɛRI-induced TNF production via cAMP mechanism. Our results showed 
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that stimulation of FcɛRI could significantly increase the expression level of A2A and 

decrease A3A receptors at mRNA and protein levels, and that these changes accompany the 

anti-inflammatory effect of adenosine on human mast cells. We demonstrate that selective 

up-regulation of A2A receptor following FcɛRI cross-linking promotes mast cells to shift 

from pro-inflammatory phenotype into anti- inflammatory phenotype, suggesting that the 

differential up-regulation of A2A receptor could be considered as a potential negative 

feedback through a mechanism involving accumulation cAMP. 
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Figure 2.1 A2AR signals are not responsible for inhibiting IgE-mediated 

degranulation in human skin mast cells. Human skin mast cells that were sensitized 

with anti-NP IgE were pre-treated for 1 hour with (A) stable adenosine analog NECA 

,(B) A2AR agonist (CGS-21680), (C) cAMP agonist (Sp-cAMP), and (D) cAMP 

antagonist (Rp-cAMP), and then challenged with antigen NP-BSA (100ng/ml) for 30 

minutes at 37°C).   Degranulation was determined by β-hexosaminidase release assay . 

Data are expressed as the mean ± SEM of values obtained from independent 

experiments with  human skin mast cells n = 3 different donors. *, p<0.05 Student` s t-

test. 
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Figure 2.2  The effect of A2AR on FcɛRI-induced PGD2 biosynthesis of human skin 

mast cells. Mast cells were sensitized with anti-NPIgE, then pre-treated for 10 minutes 

with (A) adenosine, (B) A2aAR agonist CGS21680, and then activated with NP-BSA 

for 30 minutes at 37°C. Secreted PGD2 in supernatant was measured by enzyme 

immunoassay (EIA). *** (p <0.01),# (p < 0.001) by one-way ANOVA. 
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Figure 2.3 The effect of A2AR signal on FcɛRI-induced TNF production from 

human skin mast cells. IgE sensitized  human skin mast cells were pre-treated for 1 

hour with (A) NECA, (B) A2AR specific agonist CGS21680, (C) A2AR specific  

antagonist ZM241385, and (D) Forskolin, and then activated with NP-BSA (100ng/ml) 

for 24 hours. Secreted TNF in supernatant was measured by ELISA. Data shown is 

expressed as mean ± SEM of values from skin mast cells from different donor tissue in 

independent experiments. * P<0.05, **(P< 0.01)  and # (p< 0.001) by one-way ANOVA 

with Bonferroni post-test. 

 



www.manaraa.com

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                 

Figure 2.4 The effect of FcɛRI stimulation on the modulation adenosine receptors 

in human skin mast cells in dose dependent manner. (A) qRT-PCR analysis of A2AR, 

A2BR and A3AR in human skin mast cells stimulated for 3 hours with 22E7 at1 pg/ml-

1µg/ml. Fold change, expressed as mean ± SEM,  was determined by the 2ΔΔCt method 

comparing simulated mast cells to non-stimulated mast cells. (B), Overlay of 

normalized FcɛRI- induced changes in A2AR and A3AR with degranulation 

demonstrating that stimulation with 22E7 at 1 ng/ml induces maximal increase of A2AR 

and decrease of A3AR. Fold changes ≥ 2- fold are considered significant.  
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Figure 2.5. Time course analysis of adenosine receptor expression following FcɛRI 

stimulation. qRT-PCR analysis of A2AR,A2BR and A3AR in human skin mast cells 

stimulated for 1, 3, 6, and 24 hours with mAb 22E7 at 100 ng/ml (A) or 1 ng/ml (B). 

Fold change was determined by the 2ΔΔCt method comparing stimulated mast cells to 

non-stimulated mast cells. Fold change ≥ 2-fold are considered significant. (C) 

Degranulation dose response to 22E7 showed that optimal stimulation with 22E7 at 

100ng/ml induces degranulation, whereas sub-optimal stimulation with 1 ng/ml does 

not. Degranulation was determined by β- hexosaminidase release assay. 
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Figure 2.6 IgE/Ag cross-linking induces changes in adenosine receptors 

expression. qRT-PCR was used to measure the changes in adenosine receptors. Human 

skin mast cells were sensitized with anti-NP IgE, and then activated with multivalent 

antigen (NP-BSA) (100ng/ml) for 3 hours. NP-BSA increases A2AR and decreases 

A3AR in human skin mast cells. Fold change was determined by the 2ΔΔCt method 

comparing stimulated mast cells to non-stimulated mast cells. Fold changes  ≥ 2-fold 

are considered significant. 
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Figure 2.7 Functional expressions of adenosine receptors following crosslinking 

FcɛRI signal.  Human skin mast cells were stimulated with 22E7 (1 ng/ml) for 6 hours, 

washed, and re-suspended in buffer with or without adenosine for 10 minutes. 

Intracellular cAMP was measured by commercially available kit. Accumulation cAMP 

is increased in human skin mast cells with upregulation of A2AR and down regulation 

of A3AR following suboptimal stimulation FcɛRI upon exposure to adenosine ** (p< 

0.001). 
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Figure 2.8 Efficiency of the up-regulation of A2AR on FcɛRI-induced TNF 

production in human skin mast cells. IgE-sensitized human skin mast cells with anti-

NP IgE, stimulated with sub-optimal concentrations of NP-BSA (1ng/ml) to 

crosslinking FcɛRI for 6 hours, were washed, pretreated with adenosine for 1 hour, then 

stimulated with IL-33 (10ng/ml) for 24 hours. Secreted TNF in supernatant was 

measured by ELISA  measured by ELISA.* P <0.05. 
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CHAPTER 3  

MIR-155 IS A POSITIVE AND NEGATIVE REGULATOR OF MAST 

CELL RELEASE INFLAMMATORY MEDIATORS 

3.1 Background 

Mast cells are a major driver of allergy and other chronic inflammation through 

releasing various inflammatory mediators that contribute to allergic diseases240. These cells 

can be highly regulated by miRNAs. MiRNAs are non-coding RNA molecules that regulate 

gene expression of various mediators81. It has been demonstrated that miRNAs play an 

important role in allergy and asthma pathogenesis174. miRNAs exhibit different expression 

profiles in asthmatics, allergic rhinitis subjects compared with health subjects81. Several 

miRNAs have been reported to play important roles in regulation of mast cell activation, 

like miR221, miR223 and others241. In addition, miR-155 was reported to control mast cells 

activation and anaphylaxis242. MiR-155 is upregulated in different activated immune cells, 

implying the effector function of miR-155 in the cells185. It has been reported that miR-155 

is highly increased in an allergen- induced model of asthma195. In this study, we used 

human skin mast cells and wild type and miR-155 knockout (KO) to address the role of 

miR-155 in regulating the release of inflammatory mediators from mast cells. Our results 

showed that miR-155 expression was induced following FcɛRI cross-linking with 

multivalent antigen in human skin mast cells and mouse BMMCs. We found that miR-155 

did not influence FcɛRI-induced mast degranulation. Moreover, the amount of β- 

hexosaminidase activity was the same in both types of mast  cells.
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 We also showed that miR-155 has no effect on leukotrienes C4 secretion in these 

cells. In support of this, we observe that ALOX5 expression was similar in WT and miR-

155 KO BMMCs at mRNA and protein levels. In contrast, FcɛRI-induced expression of 

COX-2, which is directly involved in prostaglandin biosynthesis, was severely diminished 

in the absence of miR-155. In addition, miR-155 KO significantly reduced the levels of 

TNF, IL-6, and IL-13 following FcɛRI cross-linking, but the level of these cytokines was 

increased compared to WT following LPS treatment. The phosphorylation of Akt was 

significantly decreased in miR-155 KO compared to WT, whereas p38, p42/p44 

phosphorylation were not affected. These data suggest the regulatory role of miR-155 in 

mast cell release mediators. Therefore, modulation of miR-155 expression could support 

targets to therapeutically target and modulate mast cell response. 

3.2 Materials and methods 

The methods detailed in this section were designed to address the role of miR-155 

in the regulation of mast cell function by investigating its effects on degranulation, 

eicosanoid biosynthesis, gene expression and cytokines production. This study was 

performed on human skin-derived mast cells that were isolated in accordance with the 

Human Studies Internal Review Board (IRB) of the University of South Carolina and 

BMMCs that were generated in vitro from wild and miR-155KO mice in accordance with 

animal use protocol approved by the Institutional Animal Care and USC Committee 

(IACUC) at the University of South Carolina. 

 3.2.1 Bone Marrow-Derived Mast Cells (BMMCs), IgE Sensitization, and Activation 

Bone marrow was isolated from femurs and tibias of sex and age-matched (8-12 

weeks old) miR-155-/- and C57BL6 mice that were housed at the University of South 
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Carolina and that were used in accordance with animal use protocols approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Carolina.  After flushing the bone marrow from the bones with media and filtering through 

a 40μm filter, bone marrow cells were cultured with complete RPMI 1640 media 

supplemented with 10% FCS and 10ng/ml each of murine recombinant stem cell factor 

(SCF) and interleukin-3 (IL-3).  The cultures were maintained under standard conditions 

(37oC, 5% CO2) with weekly media changes, and used for experiments when >95% of the 

cells were FcεRI+.  Prior to each experiment, BMMCs were sensitized with IgE by 

culturing overnight in media containing anti-DNP IgE (0.1μg/106 cells) (generously 

provided by Dr. Daniel Conrad, Virginia Commonwealth University).  For activation, 

BMMCs were washed to remove unbound IgE and were treated with DNP-BSA at 

concentrations and time points indicated.   

3.2.2 Human Skin Mast Cells, IgE Sensitization, and Activation 

Human skin mast cells (SMCs) were isolated and purified from fresh surgical 

specimens of human skin tissue. Skin tissues were obtained from the Cooperative Human 

Tissue Network of the National Cancer Institute, as approved by the Human Studies 

Internal Review Board (IRB) of University of South Carolina.  SMCs were cultured in X-

VIVO 15™ media containing SCF (100 ng/ml) with weekly media changes.  SMCs (106 

cells/ml) were sensitized with IgE by incubating overnight in media containing 1 μg/ml 

chimeric human anti-NP IgE (clone JW8/1; AbD Serotec) at 37oC.  After washing and re-

suspending the cells in Tyrode’s-BSA buffer, SMCs (106 cells/ml) were activated with NP-

BSA (Biosearch Technologies) using the indicated concentration and time-point at 37oC. 
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3.2.3 Degranulation, Cytokine, and LTC4 release assays 

FcεRI-induced degranulation and Leukotriene C4 (LTC4) release were determined 

by standard β-hexosaminidase release assay and enzyme immunoassay, respectively.  IgE-

sensitized BMMCs (106 cells/ml) were activated with DNP-BSA at the indicated 

concentrations for 30 minutes in Tyrode’s-BSA buffer  (135 mM NaCl, 1 mM MgCl2, 20 

mM Hepes, 5 mM KCl, 1.8 mM CaCl2, 5.6 mM glucose; pH 7.4, 0.05% bovine serum 

albumin). After the activation period, BMMCs and supernatant were separated by 

centrifugation, and BMMCs were lysed with 1% Trixon X-100.  For degranulation, 10μl 

of supernatant and lysate was mixed with 10μl of 1mM p-nitrophenyl N-acetyl-β-D-

glucosaminide (PNAG; Sigma-Aldrich) in a 96 well plate, and incubated for 1hour at 37oC.  

The reaction was terminated and the color change was induced with 200μl/well of 0.1M 

Na2CO3/NaHCO3 buffer, and absorbance was read at 450 nm.  Percent β-hexosaminidase 

release was calculated from the absorbance values according to the formula: % β-

hexosaminidase release = ((supernatant)/(supernatant + lysate)) × 100.  LTC4 in the 

supernatant was measured with a commercial enzyme immunoassay (Cayman Chemical) 

according to the manufacturer’s instructions.  For cytokine determination, BMMCs (106 

cells/ml) were activated with anti-DNP IgE or stimulated with lipopolysaccharide (LPS) at 

the indicated concentrations for 24 hours in complete RPMI 1640 media supplemented 

with SCF and IL-3.  TNF, IL-6, and IL-13 in the cell-free media were measured with 

commercial enzyme linked immunosorbent assay (ELISA) (R&D Systems). Absorbance 

measurements were taken on a BioTek Synergy HT microplate reader, and cytokine 

concentrations were determined using Gen5 Data Analysis Software. 
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3.2.4 Gene Expression Analysis 

Gene expression was determined by quantitative real-time PCR.  IgE-sensitized 

BMMCs were activated with DNP-BSA at the indicated concentrations and time-points, 

and RNA was extracted with miRNeasy kits.  Inactivated cells were used as a control for 

the experiment. For miR-155 analysis, cDNA was synthesized with miScript II RT with 

HiFlex buffer, and PCR was carried out with miScript SYBR Green and miScript Primer 

Assays for human and mouse miR-155-5p, and SNORD96A was used as the control gene. 

PCR was carried out with 2ng of cDNA per reaction in a hot start protocol: (95°C × 15 

min, (94°C × 15 sec, 55°C × 30 sec, 70°C × 30 sec) x 35 cycles). All miRNA kits were 

purchased from Qiagen and used according to the manufacturer’s instructions. For COX-2 

and ALOX5 analysis, cDNA was synthesized with the iScript cDNA Synthesis kit, and 

PCR was performed using iQ SYBR® Green Supermix (Bio-Rad).  PCR was carried out 

with 200ng of cDNA per reaction in a hot-start protocol: (95°C × 5 min, (95°C × 30 sec, 

55°C × 30 sec, 72°C × 30 sec) x 35 cycles, 95°C × 1 min, 55°C × 1 min). Validated 

oligonucleotide primers (Sigma-Aldrich) that were used included COX-2 (F:5’-

ACTGCTCAACACCGGAATTT-3’, R: 5’-CAAGGGAGTCGGGCAATCAT-3’), 

ALOX5 (F: 5’-CAGGAAGGGAACATTTTCATC-3’, R: 5’-

AGGAAGATTGGGTTACTCTC-3’), and β2 microglobulin (B2M) (F: 5’-

TGGGTTTCATCCATCCGACA-3’, R: 5’-CTGCTTACATGTCTCGATCCC-3’).   

Analysis was performed on a CFX Connect Real Time PCR Detection System (Bio-Rad).  

The fold change in expression was determined by the 2ΔΔCt method. 
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3.2.5 miR-155 genotyping 

MiR-155 genotyping was performed using a modified version of a protocol 

provided by Jackson Laboratories. Genomic DNA was extracted from WT and miR-155 

KO BMMCs by incubating it with Direct PCR Lysis Reagent (cell) + Proteinase K solution 

(Viagen Biotech) overnight in a 55oC water bath followed by a 1 hour incubation at 85oC.  

The DNA was precipitated with ethanol + NaOAc, re-suspended in water, and 50ng per 

reaction was amplified with iTaq Universal SYBR Green Supermix (Bio-Rad) in a reaction 

mix containing wild type (5’-AATCATTCCTGAGGG CTACC-3’) or mutant (5’-

GCCTGAAGAACGAGATCAGC-3’) forward primer and a common primer (5’-

GGAAACGTGGGTCTCCTTAC-3’) with the protocol 94oC × 5min, (94oC × 5min, 

61.8oC × 1min, 72oC × 30sec) x 36 cycles, 72oC × 3min.  For visualization, the PCR 

products were loaded onto a 1.5% TBE gel containing ethidium bromide and 

electrophoresed.  The expected band sizes were 165bp for miR-155+/+ and 226bp for miR-

155-/-. 

3.2.6 Flow Cytometry 

The BMMCs (106/ml) were washed and re-suspended in FACS buffer (1% BSA, 

0.04% NaN3 in PBS) on ice.  FcγRs were blocked with rat anti-mouse CD16/32 (Clone 

S17011E) (1μg/106 cells) for 20 minutes on ice.  The cells were stained with FITC-labeled 

anti-mouse FcεRIα mAb (clone MAR-1) or IgG isotype control (clone HTK888) 

(BioLegend) (1μg/106 cells) for 20 minutes on ice. The cells were washed twice in FACS 

buffer and fixed with 2% paraformaldehyde.  Data was collected using a FACSAria II cell 

sorter and was analyzed with FlowJo v10 software (FlowJo, LLC).  
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3.2.7 Immunoblotting 

Whole cell lysates were prepared from BMMCs that were activated as indicated. 

BMMC activation was terminated immediately by the addition of ice-cold PBS.  The 

BMMCs were pelleted by centrifugation and lysed (107 cells/ml) with Tris-Glycine SDS 

Sample Buffer (Life Technologies) containing 1% β-mercaptoethanol and 1mM Na3VO4.  

Equivalent volumes were loaded onto 10-12% Tris-Glycine polyacrylamide gels and 

separated by SDS-PAGE.  The separated proteins were then transferred onto nitrocellulose 

membranes with Towbin’s Transfer Buffer (25μM Tris, 192mM Glycine, 20% Methanol) 

using a semi-dry transfer apparatus (Bio-Rad).  After transfer, the membranes were blocked 

for 1 hour at room temperature with Odyssey Blocking Buffer (LI-COR Biosciences).  

Two-color staining was performed by incubating the blots overnight at 4oC with the 

following combination of primary antibodies (Cell Signaling Technology): rabbit 

polyclonal anti-p38 MAPK + mouse monoclonal anti-phospho-p38 MAPK 

(Thr180/Tyr182)(28B10), rabbit polyclonal anti-p44/42 (Erk 1/2) + mouse monoclonal 

anti-phospho-p42/44 (Erk1/2) (Thr202/Tyr204) (E10), rabbit polyclonal anti-Akt + mouse 

monoclonal anti-phospho-Akt (Thr308)(L32A4), or rabbit monoclonal anti-ALOX5 

(C49G1) + mouse monoclonal anti-β-actin (8H10D10).  After the incubation period, the 

blots were washed and incubated for 1 hour at room temperature with the secondary 

antibodies goat anti-rabbit IRDye 680RD + goat anti-mouse 800CW (LI-COR 

Biosciences).  The blots were then washed and scanned on an Odyssey® CLx Infrared 

Imaging System and were analyzed with Image Studio Software version 3.1.4 (LI-COR 

Biosciences). 
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3.2.8 Statistical analysis 

Statistical analysis was performed using GraphPad Prism, version 6.0c for Mac OS 

X, GraphPad Software (La Jolla California USA), and the software is available for 

download at www.graphpad.com 

3.3 Results 

3.3.1 FcεRI crosslinking upregulates miR-155 expression in human and mouse mast 

cells 

To determine the miRNAs that are potentially involved in IgE-stimulated mast 

cells, we performed a miRNA array of human skin mast cells in stimulated and non-

stimulated mast cells. MiRNAs array analysis revealed that miRNAs were altered 

following crosslinking FcɛRI. We identified 10 miRNA that were significantly (p< 0.01) 

upregulated, and 11 downregulated (Figure 3.1). Notably, miR-155-5P was the most 

significantly upregulated in activated mast cells. We confirmed the miRNA array data with 

quantitative RT-PCR analysis of SMCs (Figure 3.2A), and further demonstrated that miR-

155-5p expression was also induced in C57BL6 BMMCs following FcεRI crosslinking 

(Figure 3.2B). Thus, FcεRI signaling induces miR-155-5p expression in human and mouse 

mast cells. 

3.3.2 MiR-155 positively regulates the FcεRI-induced prostaglandins pathway, but 

has no effect on LTC4 synthesis or degranulation  

To investigate the effect of miR155 expression in regulating mast cells function, 

we compared BMMCs from WT and miR-155KO. The genotype was confirmed by PCR 

(Figure 3.3A) and quantitative RT-PCR (Figure 3.3B). We also determined the  effect of 

miR155 in the surface expression of FcɛRI by FACS  (Figure 3.3C)  and the content of the
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β-hexosaminidase (Figure 3.3D). No significant difference in the IgE receptor expression 

or the contents of β-hexosaminidase was observed between WT and KO BMMCs, 

indicating that miR155 has no effect on mast cells development. Next, we assessed the role 

of miR-155 deficiency on IgE-mediated mast cell activation. 

 For functional studies, BMMCs were sensitized with anti-DNP IgE (0.1µg/106 

cells), and then challenged with DNP-HSA (0.1-100 ng/ml) to FcɛRI crosslinking. We 

found that miR-155 had no effect in IgE-mediated degranulation, which was indicated by 

the release of β-hexosaminidase (Figure 3.4A). We also observed that the miR-155 had no 

effect on mast cells degranulation in response to stimulation with calcium ionophore, 

suggesting that miR-155 has no effect on IgE and non-IgE mediated degranulation in 

BMMCs (Figure 3.4B). Next, we determined the effect of miR-155 deficiency on the 

arachidonic acid pathways leading to LTC4 and PGD2. We analyzed the effect of miR-155 

on COX-2 expression, which is a key enzyme in eicosanoid pathways leading to 

prostaglandins. IgE-sensitized BMMCs were activated with DNP-HSA for 5, 10, 20, and 

40 minutes. Changes in expression of COX-2 expression were determined with qRT-PCR. 

As shown in (Figure 3.5A), FcɛRI induced COX-2 expression was highly diminished in 

miR-155 KO BMMCs, indicating that FcɛRI- induced PGD2 biosynthesis is defective in 

the absence of miR155. Because we are working on mouse samples that contain antibodies 

that interfere with PGD2 ELISA kit, we could not measure PGD2. Interestingly, FcɛRI -

induced LTC4 was not affected in the absence of miR-155, although a slight but 

insignificant increase was observed (Figure 3.5B) Accordingly, ALOX5 expression, a key 

enzyme in the leukotriene pathway, was expressed at similar mRNA and protein levels in 

WT and miR-155 KO BMMCs (Figure 3.5C and D). Together, these data demonstrate that 
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miR-155 positively regulates the FcɛRI-induced prostaglandin pathway, but does not 

regulate the leukotriene or degranulation pathways in mast cells. 

3.3.3 MiR-155 has divergent effect on IgE-dependent and LPS-stimulated cytokines 

production in mast cells 

To determine the role of miR-155 on IgE-mediated cytokine production, BMMCs 

from WT and miR-155 KO mice were sensitized with anti-DNP IgE (0.1µg/106), and then 

challenged with DNP-HSA (10ng/ml) for 24 hours. Secreted TNF, IL-6, and IL-13 in the 

cell-free supernatants were measured with ELISA. As shown in (Figure 3.6), miR-155 KO 

BMMCs secreted significantly lower amounts of TNF, IL-6, and IL-13 compared to WT 

BMMCs. In order to determine the inhibitory role of miR-155 deficiency on cytokines, 

production was limited to FcɛRI signals or to similar signaling pathways. WT and miR-

155 KO BMMCs stimulated with (LPS) (0.1-10µg/ml) activated Toll like Receptor 

(TLR4). In contrast, with FcɛRI crosslinking, TNF, IL-6, and IL-13 were secreted at 

significantly greater amounts from LPS-stimulated miR-155 KO BMMCs compared to WT 

(Figure 3.7). Together, these data demonstrate that miR155 has divergent effects on 

cytokine production induced by FcɛRI and TLR4, indicating that the targets of miR-155 

are distinct in the FcɛRI and TLR4 pathways. 

3.3.4 FcεRI-induced Akt phosphorylation is inhibited in miR-155 deficient mast cells  

Akt is known to play a major role in FcεRI-induced cytokine production from mast 

cells243.  Therefore, we compared Akt activation in WT and miR-155 KO BMMCs 

following FcεRI crosslinking. As predicted, based on the observed impairment in cytokine 

production in the absence of miR-155 (Figure 3.8), IgE-dependent Akt phosphorylation 

was severely attenuated in miR-155 KO BMMCs.  On the other hand, p38 and p42/44 

(ERKs) phosphorylation was unaffected, indicating that miR-155 specifically targets the 
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Akt pathway and not early FcεRI-proximal events that broadly control FcεRI signaling.  

Indeed, it was reported that miR-155 deficiency had no effect on activation of FcεRI-

proximal src kinases Fyn and Lyn, which negatively and positively regulate FcεRI 

signaling pathways, respectively242. Akt is known to be downstream of the 

phosphoinositide 3-kinase (PI3K) pathway and a direct substrate of phosphoinositide-

dependent protein kinase 1 (PDK1)244.  However, we did not detect any difference in 

expression of the PI3K subunits p85 or p101, or PKD1 in miR-155 KO BMMCs compared 

to WT cells, indicating that miR-155 is a target of Akt- independent PI3K pathways. 

3.4 Discussion 

MiRNAs have been recognized as posttranscriptional regulators with enormous 

importance in many cellular processes241. MiR-155 plays a key role in the pathogenesis of 

allergic diseases245. Although much evidence indicates its role in allergic disease, few 

studies address the role of miR-155 in mast cells function. Therefore, elucidating the 

function of miR-155 in mast cells is greatly beneficial for controlling and treating allergic 

diseases like asthma. In this study we identified 21 dysregulated miRNAs following 

crosslinking FcɛRI in SMCs. Among them, 11 were downregulated, and 10 were 

upregulated. MiR-155-5p was significantly upregulated miRNAs in IgE-stimulated mast 

cells, suggesting that miR-155 play a regulatory role in mast cells function. To further 

explore the role of miR-155 in mast cells, we compared the effects of miR-155 from WT 

and miR-155 from KO BMMCs on IgE-mediated mast cells activation. Our study 

demonstrated that miR-155 has no effect in IgE-dependent degranulation. In contrast, a 

previous study showed that absence of miR-155 enhanced mast cells degranulation and 

Lamp 1 expression following FcɛRI crosslinking242. However, this study also reported that 
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FcɛRI-induced phosphorylation of syk and src kinases, critical signaling proteins that 

regulated FcɛRI- induced degranulation was unaffected in miR-155 KO BMMCs. 

Moreover, the reported % β-hexosaminidase release was only on the order of 15% 

following FcɛRI crosslinking of WT BMMCs with antigen at a concentration (20 ng/ml) 

that should have induced a > 50 % effect. For comparison, 10 ng/ml antigens induced 51.3 

± 1.8 % β- hexosaminidase. 

 We also found that inhibition miR-155 has no effect in  mast cells stimulated with 

calcium ionophore A23187, indicating that miR-155 has no role in regulating mast cells 

degranulation that are activated by IgE or non-IgE mechanism. Eicosanoids like 

leukotrienes and prostaglandins are important proinflammatory mediators released within 

minutes following mast cells activation, and play an important role in various pathological 

conditions like allergic asthma26. Biosynthesis of these mediators starts with conversion of 

arachidonic acid by cyclooxygenase and lipoxygenase pathways into prostaglandins and 

leukotrienes246. 

 Many miRNAs have been reported to play a key role in the regulation of eicosanoid 

pathways246. In our study, we demonstrate that miR-155 has no effect on leukotrienes 

secretion. However, FcɛRI-induced COX-2 was significantly diminished (p <0.01) in the 

absence of miR-155, suggesting that miR-155 plays a critical role in PGD2. MiR-155 has 

been found to increase COX-2 expression in the smooth muscles of human asthmatics 

airways, and non-asthmatics patients indicated the positive correlation between miR-155 

and COX-2 expression247. A similar finding was observed in cockroach allergen-induced 

mouse model of asthma195. 
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 For further insight into the role of miR-155 during mast cells activation, we 

examined its effect on cytokines production by stimulated BMMCs from WT and miR-155 

KO with two different signaling. Our finding demonstrated that miR-155 regulated 

cytokines production in mast cells. Inhibition of miR-155 in FcɛRI-induced cytokines 

production result in suppressing production of proinflammatory cytokines TNF, IL-6, and 

IL-13, all of which play an important role in inflammatory and allergic responses. In 

contrast, a certain previous study had demonstrated that miR-155 deficiency enhanced IL-

6, TNF, and IL-13 compared to WT242. It has been revealed that inhibition of miR-155 

positively regulated the expression of Th2 IL-5,and IL-13248. Several miRNAs have 

demonstrated their role in regulating cytokines production in mast cells249,250. Interestingly, 

inhibiting miR-155 promoted TNF, IL-6, and IL-13 in LPS- treated BMMCs. Thus, our 

data suggest that miR-155 is a positive regulator in FcɛRI induced cytokine production, 

and a negative regulator in LPS- stimulated cytokines production. Many studies have 

indicated the critical role of miR-155 in the inflammation and modulation immune 

response251.  

MiR-155 was reported to inhibit or promote inflammation depending on the 

inflammatory stimulant involved251. The AKT/PI3K signaling pathway is involved in 

mediating many aspects of mast cells functions, like maturation, activation, survival and 

apoptosis252. As the PI3K conformation changes, phosphorylation of amino acids residues 

Ser 473 and Thr 308 by PDK1 is required for Akt activation253. Many previous studies 

have reported that the PI3K/Akt signaling pathway playa an important role in the regulation 

of mast cells activation and allergic diseases252,253. In this study, the phosphorylation of 

Akt to be involved in cytokine production was severely inhibited in miR-155 KO BMMCs. 
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However, we did not detect any difference in expression of the PI3K subunits p85 or p101, 

or PKD1 in miR-155 KO BMMCs compared to WT cells. These findings are inconsistent 

with a previous study which demonstrated that miR-155 KO BMMCs increased Akt and 

the downstream of the PI3K242.  

These data demonstrate that miR-155 is a positive regulator of FcεRI-induced Akt 

activation independent of PI3K. These findings may point towards the effect of miR-155 

in regulating FcɛRI- dependent mechanism like cytokines and prostaglandin production, 

indicating the essential role of miR-155 in regulating mast cells response. In conclusion, 

the current study identified that miR-155 was significantly up-regulated in human and 

mouse mast cells, and that inhibition attenuated IgE-induced COX-2 expression and pro-

inflammatory cytokines production, but augmented the production of these cytokines in 

LPS-stimulated mast cells. These results highlight the regulatory role of miR-155 on mast 

cell response and indicate how miR-155 may serve as a novel approach for the treatment 

of allergic diseases. 
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Figure 3.1 FcεRI crosslinking alters miRNAs profile in human skin mast cells. Heat 

map shows significant (p<0.01) alterations in specific miRNA in sensitized human skin 

mast cells that were stimulated, or not (NS), with multivalent antigen (NP-BSA). RNA 

was isolated with miRNeasy kit, and miRNAs profile was performed 
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Figure 3.2 qRT-PCR were performed to determine the expression of miR-155 in 

human and mouse mast cells. (A) miR-155 expression in human skin mast cells. IgE- 

sensitized SMCs were activated with different concentrations of NP-BSA for 6 hours. 

(B) miR-155 expression in WT BMMCs. BMMCs from WT were sensitized, activated 

with different concentrations of DNP-HSA for 6 hours. The expression of miR-155 was 

determined by qRT-PCR. 
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Figure 3.3. The effect of miR-155 on development of mast cells (A) miR-155 

genotyping of BMMCs from WT and KO BMMCs was determined by PCR. The 

expected band sizes were 165bp for miR 155+/+ and 226bp for miR-155-/-. (B) qRT-

PCR was compared to miR-155 expression in WT and miR-155 KO BMMCs (C) 

Expression of FcɛRI surface expression in WT, and miR-155 KO BMMCs was 

measured by FACS. (D) The total contents of β- hexosaminidase in the WT and miR-

155 KO BMMCs. 
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Figure 3.4 The effect of miR-155 on IgE and non IgE-induced degranulation in 

BMMCs. (A) BMMCs from WT, miR-155 KO were sensitized with anti-DNP IgE 

and then challenged with DNP-HSA (1-100 ng/ml) for 30 minutes. Degranulation was 

determined by β-Hexosaminidase assay. (B) BMMC from WT, and miR-155 KO 

BMMCs were pre-treated with different concentrations of calcium ionophore A23187 

for 30 minutes. Degranulation was determined by β-hexosaminidase assay . 
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Figure 3.4 The effect of miR-155 on IgE and non IgE-induced degranulation in 

BMMCs. (A) BMMCs from WT, miR-155 KO were sensitized with anti-DNP IgE 

and then challenged with DNP-HSA (1-100 ng/ml) for 30 minutes. Degranulation was 

determined by β-Hexosaminidase assay. (B) BMMC from WT, and miR-155 KO 

BMMCs were pre-treated with different concentrations of calcium ionophore A23187 

for 30 minutes. Degranulation was determined by β-hexosaminidase. 

 

Figure 3.5.The effect of miR-155 on eicosanoids production in BMMCs. (A) Time-

course of COX-2 expression sensitized BMMCs were activated with DNP-HSA (10 

ng/ml) for 5, 10, 2, and 40 min, and COX-2 expression was determined by qRT-PCR. 

* (p< 0.05), ** (p< 0.01) (B). LTC4 concentrations in WT and miR-155 KO were 

sensitized with anti-DNP IgE and then challenged with DNP-HSA (10ng/ml) for 20 

minutes. LTC4 was measured by enzyme immunoassay. (C) Relative expression of 

ALOX5 expression by qRT–PCR. (D) Protein level of ALOX5 by Western Blot. 
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Figure 3.6 The effect of miR-155 on FcεRI-induced  cytokines production from 

WT and miR-155 KO BMMCs. WT and miR-155 KO BMMCs were sensitized with 

anti-DNP IgE and then challenged with DNP-HSA (10 ng/ml) for 24 hours. Cytokines 

in the cell-free supernatants were measured with ELISA  **, p<0.01; ***, p<0.001 by 

Student’s t-test (n=3). 
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Figure 3.7 The effect of miR-155 on LPS-induced cytokine production in BMMCs  

. WT and miR-155 KO BMMCs were stimulated with LPS (0.10µg/ml) for 24 hours. 

Cytokines in cell-free supernatant were measured with ELISA. . *, p<0.05 by Student's 

t-test (n=3). 
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Figure 3.8 The effect of miR-155 on FcεRI-induced phosphorylation of Akt, p42/44 

and p38 in BMMCs. Phosphorylation of Akt, p38, and p 42/ p44 l was determined by 

quantitative infrared Western blotting of whole cell lysates of sensitized mast cells 

activated for 5 minutes with 10 ng/ml DNP-HSA. Fold induction of phosphorylation 

was determined from fluorescent signal values obtained with an infrared imager. The 

blots shown are representative of 3 independent experiments with mast cells from WT, 

and miR-155 KO BMMCs. 
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CHAPTER 4

RESVERATROL INHIBITS FCƐRI-INDUCED COX-2 EXPRESSION 

OF MAST CELLS VIA SUPRESSION OF MIR-155 

4.1 Background 

Resveratrol (3,5,4`trihydroxy stilbene) is a natural polyphenolic compound found 

in various plants species such as grapes, berries, peanuts, and some medicinal herbs200. 

Resveratrol, which has a stilbene structure, exists into two isoforms: trans isomers which 

is the active and abundant form, and the cis isomers199. Resveratrol has been shown to have 

many biological and pharmacological activities, including anti-oxidant, anti-cancer, anti-

allergic, and anti-inflammatory effects206. The anti-allergic effect of Resveratrol has been 

demonstrated in acute mouse models of allergic airway inflammation and in murine mouse 

models of asthma207. Resveratrol attenuates allergic asthma by reducing Th2 inflammatory 

cytokines such as IL-4, and IL-5. Furthermore, oral administration of Resveratrol inhibits 

bronchial hyper-reactivity, lung eosinophilia, and mucus secretion. Resveratrol has also 

been shown to inhibit the release of allergic mediators from murine BMMCs254. 

Additionally, the anti-inflammatory effects of resveratrol have also been attributed to the 

inhibition of COX-2 expression and NFkB255. The inhibitory effect of Resveratrol on COX-

2 expression has also been demonstrated in SMCs following activation256. However the 

mechanism by how Resveratrol inhibits FcɛRI-induced COX-2 expression has not been 

identified. Resveratrol has the ability to modulate the activity and expression of miRNAs 

that play important roles in the regulation of target gene expression. They are involved in 
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the regulation of different cellular processes such as proliferation, apoptosis, metabolism, 

and are linked with different pathologies161. The mechanism of Resveratrol-mediated 

inhibition of FcɛRI-induced COX-2 expression at the miRNA levels is not fully 

understood.  In this study, microarray analysis identified that Resveratrol inhibits the 

FcɛRI-induced miR-155 expression in human skin mast cells. We demonstrated that FcɛRI-

induced COX-2 expression was inhibited in WT BMMCs and further failed to inhibit 

COX-2 in miR-155 KO BMMCs following Resveratrol treatment. Our results showed that 

Resveratrol inhibits FcɛRI-induced COX-2 and miR-155 expression in mast cells, leading 

to the increase of ATF3 expression as a possible mechanism to therapeutically target and 

modulate COX-2-PGD2 biosynthesis. 

4.2 Materials and methods 

The experiments described in this part were designed to identify the mechanism of 

regulation for Resveratrol to inhibit COX-2 expression through modulation miR155 

expression in mast cells, and to assess the target or the repressor. This study was performed 

on in-situ-matured human skin mast cells and bone marrow- derived mast cells (BMMCs) 

from WT, KO 155 BMMCs. 

4.2.1 Isolation, purification, and culture of human skin mast cells and BMMCs 

Human skin mast cells and BMMCs were isolated, purified and cultured in their 

corresponding media as described in chapter 2.2 and 3.2 

4.2.2 IgE sensitization, and activation in human skin mast cells and BMMCs 

Mast cells (106cells/ml) were sensitized with anti-NP IgE (human) or anti-DNP IgE
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(mouse) (1 µg/ml) overnight. Mast cells were pre-treated with Resveratrol (Sigma-Aldrich, 

St. Louis, MO) or DMSO (vehicle) for 1 hour at 37°C, and then activated with 100 ng/ml 

NP-BSA or 10 ng/ml DNP-HSA for the indicated amount of time. 

4.2.3 Microarray Analysis 

MiRNA array analysis on human skin mast cells was performed. IgE- sensitized 

human skin mast cells with anti-NP IgE were pre-treated with Resveratrol (10µM) for 1 

hour, and then activated for 3 hours with NP-BSA. RNA was isolated with miRNeasy kit, 

and miRNAs profile was performed. 

4.2.4 Gene Expression Analysis 

Gene expression was determined by quantitative real-time PCR. IgE-sensitized 

hSMCs or BMMCs were pre-treated with Resvertrol (10 µM) for 1hour, and then activated 

or not with NP-BSA or DNP-HSA for 3 hours, and RNA was extracted with miRNeasy 

kits.  For miR-155 analysis, cDNA was synthesized with miScript II RT with HiFlex buffer, 

and PCR was carried out with miScript SYBR Green and miScript Primer Assays for 

human and mouse miR-155-5p and SNORD96A as the control gene. PCR was carried out 

with 2ng of cDNA per reaction in a hot start protocol: (95°C × 15 min, (94°C × 15 sec, 

55°C × 30 sec, 70°C × 30 sec) x 35 cycles). All miRNA kits were purchased from Qiagen 

and used according to the manufacturer’s instructions. For COX-2, cDNA was synthesized 

with the iScript cDNA Synthesis kit, and PCR was performed using iQ SYBR® Green 

Supermix (Bio-Rad).  PCR was carried out with 200ng of cDNA per reaction in a hot-start 

protocol: (95°C × 5 min, (95°C × 30 sec, 55°C × 30 sec, 72°C × 30 sec) x 35 cycles, 95°C 

× 1 min, 55°C × 1 min). Validated oligonucleotide primers (Sigma-Aldrich) were used:  
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COX-2 (F:5’-ACTGCTCAACACCGGAATTT-3’, R: 5’-

CAAGGGAGTCGGGCAATCAT-3’), ALOX5 (F: 5’-

CAGGAAGGGAACATTTTCATC-3’, R: 5’-AGGAAGATTGGGTTACTCTC-3’), and 

β2 microglobulin (B2M) (F: 5’-TGGGTTTCATCCATCCGACA-3’, R: 5’-

CTGCTTACATGTCTCGATCCC-3’).  Analysis was performed on a CFX Connect Real 

Time PCR Detection System (Bio-Rad).  Fold change in expression was determined by the 

2ΔΔCt method. 

4.2.5 Statistical analysis 

  Statistical analysis was performed using GraphPad Prism version 6.0c for Mac OS 

X, GraphPad Software (La Jolla California USA), and the software is available at  

www.graphpad.com.  

4.3 Results 

4.3.1 Resveratrol down-Regulation FcɛRI-induced miR-155 expression in human 

primary skin mast cells 

MiR-155 plays an essential role in the regulation of immune response161. We had 

previously shown that Resveratrol inhibited FcɛRI-induced COX-2 expression in human 

skin mast cells, which is responsible for prostaglandin biosynthesis256. Thus, we 

determined the effect of Resveratrol on FcɛRI-induced miRNAs expression in human 

primary skin mast cells by performing a miRNAs array analysis. To do so, human skin 

mast cells were sensitized with anti-NP IgE, washed to remove unbound IgE, pre-treated 

with Resveratrol (10µM) for 1hour, and then activated, or not, with NP-BSA (100 ng/ml) 

for 3 h. Total RNA was extracted with miRNeasy kit, and miRNA expression profiling was 

http://www.graphpad.com/
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performed. As seen in (Figure 4.1A), Resveratrol altered miRNA expression profile 

following cross-linking FcɛRI. We found that Resveratrol downregulated FcɛRI-induced 

miR-155 expression. The Ingenuity Pathway Analysis (IPA) indicated that Activating 

Transcription Factor 3 (ATF3) was increased with Resveratrol treatment, suggesting that 

it could be the link between miR-155 and COX-2 expression (Figure 4.1B). 

4.3.2 A positive correlation between miR-155 and COX-2 expression 

Real-time qRT-PCR analysis in human skin mast cells validated the miRNA array 

analysis and IPA and confirmed that activation mast cells through cross-linking FcɛRI 

induces the production of COX-2 and miR-155 expression, whereas treatment with  low 

concentration of Resveratrol inhibits FcɛRI-induced COX-2 and miR-155 expression in 

human skin mast cells with increasing ATF3, indicating that ATF3 could be the 

intermediate COX-2 repressor that connects miR-155 to COX-2 expression ( Figure 4.2 A 

and B).  

4.3.3 Resveratrol inhibits FcɛRI- induced COX-2 expression and fails to further 

inhibit COX-2 in BBMCs  

To further corroborate that Resveratrol has the same effect on FcɛRI-induced COX-

2 expression in BMMCs. WT and miR-155KO BMMCs were sensitized with anti-DNP 

IgE, pretreated with Resveratrol (10 µM) for 1 hour, and then activated for 3 hours with 

DNP-HSA (10 ng/ml). RNA was isolated with RNeasy kit, and qRT-PCR was performed. 

As shown in (Figure 4.3), Resveratrol significantly inhibited the FcɛRI-induced COX-2 

expression in WT BMMCs (p<0.01). Moreover, Resveratrol fails further to inhibit FcɛRI- 

induced COX-2 expression in miR-155 KO BMMCs. 
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4.4 Discussion 

This study demonstrates the anti-inflammatory effects of Resveratrol on mast cells 

function by suppressing the expression of pro-inflammatory markers like COX-2 

expression, which plays an important role in the production of PGD2. Moreover, we 

confirmed the effect of Resveratrol on mast cells function by down-regulation of miR-155 

and up-regulation ATF3. Resveratrol is a non-flavonoid polyphenol that is reported to 

possess different biological and pharmacological properties such as anti-inflammatory, 

anti-cancer, anti-infective, protective activity concerning cardiovascular system, and anti-

allergic effects via multiple molecular mechanisms206. Among these pharmacological 

properties of Resveratrol is its inhibitory effect in asthma and other allergic diseases. The 

anti-allergic activity of Resveratrol has been associated with the suppression of the 

hallmark manifestation of  an allergic reaction, which is the attenuation of the allergenic 

re-exposure by suppression of the adhesion and migration of peripheral B-cells, the 

inhibition of IgE, and the IgG1 and Th2 cytokine production (IL,4, IL-5 and IL-13) in 

sensitized mice257. Resveratrol was reported to modify the miRNA profiles expression that 

play an important role in the regulation of the gene expression attributed to allergic 

disease258. Their role has been recognized in various allergic diseases such as asthma, 

eosinophilic esophagitis, allergic rhinitis, and others in different murine models, making 

them a potential therapeutic and diagnostic candidate through modulating the 

expression174.  MiR-155 has been reported to regulate mast cells function and anaphylaxis 

in mice242. In the present study, we observed that Resveratrol inhibited FcɛRI-induced 

COX-2 expression in WT BBMCs. This finding is consistent with a previous study 

conducted in human skin mast cells256. Moreover, we found that Resveratrol fails further 
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to inhibit FcɛRI-induced COX-2 expression in miR-155 KO BMMCs, indicating that miR-

155 has similar anti-inflammatory effect of Resveratrol on FcɛRI-induced COX-2 

expression. Then, we investigated the mechanism by how Resveratrol inhibited FcɛRI-

induced COX-2 expression in mast cells and identified the potential role of miRNA in 

mediating this inhibition. The miRNA array and IPA analysis was performed in human 

skin mast cells to measure the miRNA associated with COX-2 inhibition. The results 

showed that Resveratrol significantly downregulated FcɛRI-induced miR-155-5p in human 

skin mast cells, and upregulated ATF3 expression.  Furthermore, we found the positive 

correlation between miR-155-5p and Cox-2 expression in human mast cells, following 

FcɛRI crosslinking, was downregulated with Resveratrol treatment.  Because miRNAs can 

function as inhibitors of target genes, these results indicate that miR-155 targets a negative 

regulator of COX-2, rather than COX-2 directly. Previous studies have indicated that miR-

155 was shown to directly repress the inositol phosphatase SHIP-1 and Suppressor of 

Cytokine Signaling-1 (SOCS-1), both of which play an important role in the regulation of 

COX-2 expression259. ATF3 is a member of the ATF/CREB protein family of leucine Zip 

transcription factors. ATF3 was known to repress COX-2 expression in macrophages 

during the development of the inflammatory response260. In conclusion, this study shows 

that Resveratrol inhibits FcɛRI-induced COX-2 expression in mast cells and miR-155 

mediated this response to Resveratrol in mast cells. Collectively, Resveratrol inhibited 

FcɛRI- induced miR-155 and COX-2 expression with upregulation of ATF3, providing a 

novel mechanism to ameliorate allergic inflammation by affecting the mast cell release 

mediators. 
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Figure 4.1 The effect of Resveratrol on FcεRI-induced miRNA expression in 

human skin mast cells. Anti-NP IgE sensitized human skin mast cells were pre-treated 

or not with Resveratrol (10 μM) for 1 hour and then activated by crosslinking FcεRI 

with NP-BSA (100 ng/ml) for 3 hours. (A) Heat map. (B) Ingenuity Pathway Analysis 

(IPA®) comparing FcεRI-activated (NP) and Resveratrol + NP samples (NP + 

Resveratrol). 
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Figure 4.2 Positive correlation between miR-155 and COX-2 expression in human 

skin mast cells. qRT-PCR to validate the miRNA array analysis and Ingenuity Pathway 

Analysis (IPA). Resveratrol at low concentrations inhibits FcεRI-induced expression of 

miR-155 (A) COX-2 (B). The data demonstrate a positive correlation between miR-155 

and COX-2 expression. Thus, indicating that miR-155 targets a repressor of COX-2.  *, 

p<0.05 by Student’s t-test. n=3 different donors. 
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Figure 4.3 The effect of Resveratrol on FcRI-induced COX-2 expression in 

BMMCs.  qRT-PCR of WT and miR-155 KO BMMCs that were pre-treated or not with 

Resveratrol (10 μM) for 1 hour and activated with DNP-HSA (100 ng/ml) for 3 hours.  

**, p<0.01 by Student’s t-test.  
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTION 

Mast cells play a critical role in allergic disease through the release of various 

bioactive mediators. Today, the inhibition of mediators release from inflammatory cells 

like mast cells is considered an important therapeutic strategy to treat various inflammatory 

disorders, including allergic diseases. The data described here provides new knowledge to 

help us understand the factors and molecules that are responsible for the regulation of the 

mast cells response. Additionally, this study identifies their role in the allergic 

inflammation and finds potential therapeutic targets.  

Adenosine receptors have been reported to play an important role in allergic asthma 

by inducing bronchoconstriction and modulating mast cells response. In this study, we 

tested the efficiency of A2A receptors agonist in regulating mast cell mediators released 

from human skin mast cells. Several novel findings are revealed from our study. We report 

that adenosine inhibits FcɛRI-induced TNF production from SMCs. Activation of A2A 

receptor has been sufficient to mediate the inhibition of TNF production in SMCs and this 

inhibition is linked to the elevation of cAMP production. In contrast, A2A receptors have 

no effect on degranulation or PGD2. These data demonstrate that A2A signals have no effect 

on the early phase reaction, but they impact the late phase reaction. We also show 

differential expression of adenosine receptors subtypes in human SMCs. We report that 

A2A receptors are the predominant subtype following crosslinking FcɛRI, whereas 
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expression of the A3 receptors is low in the activated mast cells. We also noted that A2B 

receptors were not affected by crosslinking FcɛRI.  

These data suggest that FcɛRI signal exhibits immunomodulatory effect in part by 

modifying adenosine receptors on mast cells, which could be one way to regulate allergic 

reaction. The upregulation of the A2A receptors lead to the production of more cAMP levels 

in these cells following exposure to adenosine, identifying SMCs as a good model to act 

as effector cells in the limitation of inflammatory response. Moreover, we found that 

upregulation A2A receptor suppresses further TNF production, indicating the important role 

of A2A receptors in regulating mast cells in tissue under homeostasis and pathological 

conditions. MiRNAs, negative regulator molecules, can control the coordinate expression 

of multiple genes and proteins that drive cellular function251.  

Although many studies have indicated a role of miR155 in allergic diseases, there 

are only limited functional data of the role of miR-155 on mast cells function. In the  current 

study, we characterized the role of miR-155 on the regulation of mast cells mediators. We 

demonstrated that miR-155 expression is increased in human and mouse mast cells, 

indicating a regulatory role in these cells. We compared IgE-dependent degranulation and 

secretion of eicosanoids and cytokines from wild type and miR-155 KO BMMCs. We 

found that IgE-dependent degranulation was not affected by the absence of miR-155. 

Moreover, the amount of β-hexosaminidase was the same in both types of mast cells. 

Leukotriene C4 secretion also was not affected. Accordingly, ALOX5 expression was 

similar in WT and miR-155 KO BMMCs. However, FcεRI-induced expression of COX-2, 

which is directly involved in prostaglandin biosynthesis, was severely impaired in miR-

155 KO BMMCs, indicating a positive role for miR-155 in PGD2 biosynthesis. In the term 
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of cytokines, IgE-induced TNF, IL-6, and IL-13 were significantly decreased in miR-155 

KO BMMCs compared to WT. In support of this notion, we found that FcεRI-induced 

phosphorylation of Akt was severely impaired in miR-155 KO BMMCs. Interestingly, 

miR-155 KO BMMCs produced significantly more TNF, IL-6, and IL-13 in response to 

LPS treatment compared to WT BMMCs. These findings elucidated the role of miR-155 

in regulating mast cells response. Overall, these data demonstrated that miR-155 is 

involved in the regulation of allergic diseases in the context of mast cells.  

Future experiments will be needed to determine if overexpression of miR-155 could 

enhance the proinflammatory effect of miR-155 on COX-2 and cytokines production in 

response to crosslinking FcɛRI. To do so, human LAD2 mast cells or mouse mast cells will 

be transfected with synthetic has-miR-155-5p mimic or mmu-miR-5p mimic. After 

transfection, the cells will be sensitized with anti-NP (human), or anti-DNP-BSA (mouse) 

overnight at 37C, and then challenged with NP-BSA or DNP-BSA (100ng/ml). Changes 

of COX-2 expression will be monitored by Western Blot and qRT-PCR, and the levels of 

cytokines will be determined with ELISA. Future work will also be needed to validate other 

miRNAs that were detectable in mast cells following crosslinking FcƐRI to study their 

function in mast cells by using qRT-PCR. This validation will help us to assess whether 

other miRNAs may provide a potential mechanism in regulating mast cells.  

 Resveratrol is a natural polyphenol that exerts many biological and 

pharmacological activities such as anti-inflammation, anti-cancer, and anti-allergic 

properties. Resveratrol modulates the expression and activation miRNAs261. In this present 

study, we assessed the mechanism of how Resveratrol inhibits FcɛRI-induced COX-2 

expression in MCs. This inhibitory effect of Resveratrol is orchestrated by downregulation 
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miR-155 and the increased ATF3. We also found that Resveratrol fails to inhibit FcƐRI-

induced COX-2 expression in miR-155 KO BMMCs, indicating that miR-155 and 

Resveratrol has similar effect on FcƐRI-induced COX-2 expression. This study provides a 

novel mechanism on how Resveratrol inhibits COX-2 expression by attenuating miR-155, 

therefore showing how Resveratrol can be used as a therapeutic approach in the treatment 

of allergic diseases.  

Future experiments will be needed to validate the expression of ATF3 by qRT-

PCR. In these future experiments, we will sensitize BMMCs with anti-DNP-IgE overnight, 

pre-treated with Resveratrol for 1 hour and then activated with DNP-BSA. ATF3 

expression will be measured by qRT-PCR and Western Blot. We will also determine the 

effect of Resveratrol on FcɛRI-induced COX-2 expression in mast cell’s overexpressed 

miR-155. 
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